Tumgik
#immunotherapy
reasonsforhope · 8 months
Text
Tumblr media
Story from the Washington Post here, non-paywall version here.
Washington Post stop blocking linksharing and shit challenge.
"The young woman was catatonic, stuck at the nurses’ station — unmoving, unblinking and unknowing of where or who she was.
Her name was April Burrell.
Before she became a patient, April had been an outgoing, straight-A student majoring in accounting at the University of Maryland Eastern Shore. But after a traumatic event when she was 21, April suddenly developed psychosis and became lost in a constant state of visual and auditory hallucinations. The former high school valedictorian could no longer communicate, bathe or take care of herself.
April was diagnosed with a severe form of schizophrenia, an often devastating mental illness that affects approximately 1 percent of the global population and can drastically impair how patients behave and perceive reality.
“She was the first person I ever saw as a patient,” said Sander Markx, director of precision psychiatry at Columbia University, who was still a medical student in 2000 when he first encountered April. “She is, to this day, the sickest patient I’ve ever seen.” ...
It would be nearly two decades before their paths crossed again. But in 2018, another chance encounter led to several medical discoveries...
Markx and his colleagues discovered that although April’s illness was clinically indistinguishable from schizophrenia, she also had lupus, an underlying and treatable autoimmune condition that was attacking her brain.
After months of targeted treatments [for lupus] — and more than two decades trapped in her mind — April woke up.
The awakening of April — and the successful treatment of other people with similar conditions — now stand to transform care for some of psychiatry’s sickest patients, many of whom are languishing in mental institutions.
Researchers working with the New York state mental health-care system have identified about 200 patients with autoimmune diseases, some institutionalized for years, who may be helped by the discovery.
And scientists around the world, including Germany and Britain, are conducting similar research, finding that underlying autoimmune and inflammatory processes may be more common in patients with a variety of psychiatric syndromes than previously believed.
Although the current research probably will help only a small subset of patients, the impact of the work is already beginning to reshape the practice of psychiatry and the way many cases of mental illness are diagnosed and treated.
“These are the forgotten souls,” said Markx. “We’re not just improving the lives of these people, but we’re bringing them back from a place that I didn’t think they could come back from.” ...
Waking up after two decades
The medical team set to work counteracting April’s rampaging immune system and started April on an intensive immunotherapy treatment for neuropsychiatric lupus...
The regimen is grueling, requiring a month-long break between each of the six rounds to allow the immune system to recover. But April started showing signs of improvement almost immediately...
A joyful reunion
“I’ve always wanted my sister to get back to who she was,” Guy Burrell said.
In 2020, April was deemed mentally competent to discharge herself from the psychiatric hospital where she had lived for nearly two decades, and she moved to a rehabilitation center...
Because of visiting restrictions related to covid, the family’s face-to-face reunion with April was delayed until last year. April’s brother, sister-in-law and their kids were finally able to visit her at a rehabilitation center, and the occasion was tearful and joyous.
“When she came in there, you would’ve thought she was a brand-new person,” Guy Burrell said. “She knew all of us, remembered different stuff from back when she was a child.” ...
The family felt as if they’d witnessed a miracle.
“She was hugging me, she was holding my hand,” Guy Burrell said. “You might as well have thrown a parade because we were so happy, because we hadn’t seen her like that in, like, forever.”
“It was like she came home,” Markx said. “We never thought that was possible.”
...After April’s unexpected recovery, the medical team put out an alert to the hospital system to identify any patients with antibody markers for autoimmune disease. A few months later, Anca Askanase, a rheumatologist and director of the Columbia Lupus Center,who had been on April’s treatment team, approached Markx. “I think we found our girl,” she said.
Bringing back Devine
When Devine Cruz was 9, she began to hear voices. At first, the voices fought with one another. But as she grew older, the voices would talk about her, [and over the years, things got worse].
For more than a decade, the young woman moved in and out of hospitals for treatment. Her symptoms included visual and auditory hallucinations, as well as delusions that prevented her from living a normal life.
Devine was eventually diagnosed with schizoaffective disorder, which can result in symptoms of both schizophrenia and bipolar disorder. She also was diagnosed with intellectual disability.
She was on a laundry list of drugs — two antipsychotic medications, lithium, clonazepam, Ativan and benztropine — that came with a litany of side effects but didn’t resolve all her symptoms...
She also had lupus, which she had been diagnosed with when she was about 14, although doctors had never made a connection between the disease and her mental health...
Last August, the medical team prescribed monthly immunosuppressive infusions of corticosteroids and chemotherapy drugs, a regime similar to what April had been given a few years prior. By October, there were already dramatic signs of improvement.
“She was like ‘Yeah, I gotta go,’” Markx said. “‘Like, I’ve been missing out.’”
After several treatments, Devine began developing awareness that the voices in her head were different from real voices, a sign that she was reconnecting with reality. She finished her sixth and final round of infusions in January.
In March, she was well enough to meet with a reporter. “I feel like I’m already better,” Devine said during a conversation in Markx’s office at the New York State Psychiatric Institute, where she was treated. “I feel myself being a person that I was supposed to be my whole entire life.” ...
Her recovery is remarkable for several reasons, her doctors said. The voices and visions have stopped. And she no longer meets the diagnostic criteria for either schizoaffective disorder or intellectual disability, Markx said...
Today, Devine lives with her mother and is leading a more active and engaged life. She helps her mother cook, goes to the grocery store and navigates public transportation to keep her appointments. She is even babysitting her siblings’ young children — listening to music, taking them to the park or watching “Frozen 2” — responsibilities her family never would have entrusted her with before her recovery.
Expanding the search for more patients
While it is likely that only a subset of people diagnosed with schizophrenia and psychotic disorders have an underlying autoimmune condition, Markx and other doctors believe there are probably many more patients whose psychiatric conditions are caused or exacerbated by autoimmune issues...
The cases of April and Devine also helped inspire the development of the SNF Center for Precision Psychiatry and Mental Health at Columbia, which was named for the Stavros Niarchos Foundation, which awarded it a $75 million grant in April. The goal of the center is to develop new treatments based on specific genetic and autoimmune causes of psychiatric illness, said Joseph Gogos, co-director of the SNF Center.
Markx said he has begun care and treatment on about 40 patients since the SNF Center opened. The SNF Center is working with the New York State Office of Mental Health, which oversees one of the largest public mental health systems in America, to conduct whole genome sequencing and autoimmunity screening on inpatients at long-term facilities.
For “the most disabled, the sickest of the sick, even if we can help just a small fraction of them, by doing these detailed analyses, that’s worth something,�� said Thomas Smith, chief medical officer for the New York State Office of Mental Health. “You’re helping save someone’s life, get them out of the hospital, have them live in the community, go home.”
Discussions are underway to extend the search to the 20,000 outpatients in the New York state system as well. Serious psychiatric disorders, like schizophrenia, are more likely to be undertreated in underprivileged groups. And autoimmune disorders like lupus disproportionately affect women and people of color with more severity.
Changing psychiatric care
How many people ultimately will be helped by the research remains a subject of debate in the scientific community. But the research has spurred excitement about the potential to better understand what is going on in the brain during serious mental illness...
Emerging research has implicated inflammation and immunological dysfunction as potential players in a variety of neuropsychiatric conditions, including schizophrenia, depression and autism.
“It opens new treatment possibilities to patients that used to be treated very differently,” said Ludger Tebartz van Elst, a professor of psychiatry and psychotherapy at University Medical Clinic Freiburg in Germany.
In one study, published last year in Molecular Psychiatry, Tebartz van Elst and his colleagues identified 91 psychiatric patients with suspected autoimmune diseases, and reported that immunotherapies benefited the majority of them.
Belinda Lennox, head of the psychiatry department at the University of Oxford, is enrolling patients in clinical trials to test the effectiveness of immunotherapy for autoimmune psychosis patients.
As a result of the research, screenings for immunological markers in psychotic patients are already routine in Germany, where psychiatrists regularly collect samples from cerebrospinal fluid.
Markx is also doing similar screening with his patients. He believes highly sensitive and inexpensive blood tests to detect different antibodies should become part of the standard screening protocol for psychosis.
Also on the horizon: more targeted immunotherapy rather than current “sledgehammer approaches” that suppress the immune system on a broad level, said George Yancopoulos, the co-founder and president of the pharmaceutical company Regeneron.
“I think we’re at the dawn of a new era. This is just the beginning,” said Yancopoulos."
-via The Washington Post, June 1, 2023
6K notes · View notes
science-lover33 · 7 months
Text
The Power of Immunotherapy: A Deep Dive into Cancer Treatment
Immunotherapy, a groundbreaking approach in cancer treatment, has been making waves in the medical world. 🌟 But what exactly is it, and how does it work? Let's delve into the intricacies of this cutting-edge therapy. 💉
Immunotherapy at a Glance: 🔬 Immunotherapy, or immuno-oncology, is a therapeutic strategy that harnesses the body's immune system to combat cancer cells. Unlike traditional treatments like chemotherapy, which target both healthy and cancerous cells, immunotherapy is highly targeted, making it a game-changer in the fight against cancer.
Key Players in Immunotherapy: 🦠
Tumor Antigens are molecules found on cancer cells that act as red flags, signaling the immune system to attack. 👥
T Cells: The immune system's soldiers. They are trained to recognize and destroy threats, including cancer cells.
💡 Checkpoint Inhibitors: Proteins that, when blocked, enhance the immune response against cancer. 🧬
CAR-T Cell Therapy: Genetic engineering to supercharge T cells for precision attacks on tumors.
How Does Immunotherapy Work? Immunotherapy comes in various forms, but they all aim to accomplish one goal: boost the immune system's ability to recognize and eradicate cancer cells. Whether through checkpoint inhibitors, vaccines, or CAR-T cell therapy, the goal remains: empower the immune system's fighters!
Immunotherapy is a testament to the power of science and innovation, offering new hope to cancer patients worldwide. 🌍
Let's continue to explore, research, and advance this remarkable field to improve the lives of those affected by cancer.
References:
Postow, M. A., Callahan, M. K., & Wolchok, J. D. (2015). Immune Checkpoint Blockade in Cancer Therapy. Journal of Clinical Oncology, 33(17), 1974–1982. doi:10.1200/jco.2014.59.4358
Rosenberg, S. A., Yang, J. C., & Restifo, N. P. (2004). Cancer immunotherapy: moving beyond current vaccines. Nature Medicine, 10(9), 909–915. doi:10.1038/nm1100
June, C. H., & Sadelain, M. (2018). Chimeric Antigen Receptor Therapy. New England Journal of Medicine, 379(1), 64–73. doi:10.1056/nejmra1706164
Tumblr media
58 notes · View notes
talkethtothehandeth · 2 months
Text
If you’re disabled and give yourself injections bravo, kudos I have no idea how you do it and in a few months I’m going to have to do it at home with xolair. The problem is that I cannot handle the idea of sticking a needle into myself at all; I asked my diabetic mom if she would do it for me (since she self injects) and she said yes.
But if you do give yourself at home injections and were scared of needles previously/are still scared of needles how do you build up the courage to inject yourself because I just cannot even think about it without my body going “DANGER ⚠️” and I really need to learn how to do it on my own
* I am not afraid of needles at all, I have 15 piercings and have had countless pokes from many medical facilities , but the idea of me pushing a needle into myself is not a fun thing
14 notes · View notes
dark-paraddis3 · 6 months
Text
Tumblr media Tumblr media
It might be stormy now, but it can’t rain forever
26 notes · View notes
science-sculpt · 2 months
Text
Tumblr media
ELISA: A Powerful Tool for Detecting the Invisible
ELISA, or Enzyme-Linked Immunosorbent Assay, has become a cornerstone of medical diagnostics and biological research. This versatile technique allows scientists to detect and quantify minute amounts of target molecules, such as proteins, antibodies, and even viruses, with remarkable accuracy. In this blog, we'll delve into the world of ELISA, exploring its various types, its applications, and the exciting future directions this technology holds.
At its core, ELISA relies on the exquisite specificity of antibodies. Antibodies are highly specialized proteins produced by the immune system in response to foreign invaders. Each antibody can bind to a unique structure, called an antigen, on a specific molecule. In an ELISA, scientists leverage this binding property to create a sensitive detection system.
The 1960s witnessed a surge in interest in immunoassays, techniques that utilize the specificity of antibodies to detect target molecules. One such technique, radioimmunoassay (RIA), developed by Rosalyn Yalow and Solomon Berson, revolutionized medical diagnostics. RIA used radioactively labeled antibodies to detect antigens, offering high sensitivity. However, concerns regarding the safety of radioactive materials fueled the search for a safer alternative. The year 1971 marked a turning point. Independently, Eva Engvall and Peter Perlmann published their work on a novel technique – the enzyme-linked immunosorbent assay (ELISA). ELISA replaced radioactive labels with enzymes, eliminating the safety concerns associated with RIA. Like RIA, ELISA harnessed the specific binding between antibodies and antigens. However, it employed enzymes that could generate a detectable signal, such as a color change, upon interacting with a substrate. This innovation paved the way for a safer and more user-friendly diagnostic tool.
The basic ELISA protocol involves immobilizing the target antigen on a solid surface like a plate well. Then, a sample containing the molecule of interest (e.g., a suspected virus) is introduced. If the target molecule is present, it will bind to the immobilized antigen. Next, an antibody specific to the target molecule, linked to an enzyme, is introduced. This "detection antibody" binds to the target molecule already attached to the antigen. Finally, a substrate specific to the enzyme is added. This antigen-antibody binding is visualized using an enzyme linked to a reporter molecule. When the enzyme encounters its substrate, a detectable signal is produced, such as a color change or luminescence. The intensity of this signal is directly proportional to the amount of antigen present in the sample, allowing for quantification. The beauty of ELISA lies in its adaptability. Several variations exist, each tailored for specific detection needs.
The Four Main ELISA Formats are:
Direct ELISA: Simplicity at its finest. In this format, the antigen is directly coated onto the ELISA plate. A labeled antibody specific to the antigen is then introduced, binding directly to its target. After washing away unbound molecules, the enzyme linked to the antibody generates a signal upon addition of the substrate. Direct ELISA offers a rapid and straightforward approach, but sensitivity can be lower compared to other formats due to the lack of amplification.
Indirect ELISA: Unveiling the Power of Amplification. Similar to the direct ELISA, the antigen is first coated onto the plate. However, instead of a labeled primary antibody, an unlabeled one specific to the antigen is used. This is followed by the introduction of a labeled secondary antibody that recognizes the species (e.g., mouse, rabbit) of the primary antibody. This two-step approach acts as an amplification strategy, significantly enhancing the signal compared to the direct ELISA. However, the presence of an extra incubation step and the potential for cross-reactivity with the secondary antibody add complexity.
Sandwich ELISA: Capturing the Antigen Between Two Antibodies. Here, the capture antibody, specific for one region of the antigen, is pre-coated onto the ELISA plate. The sample containing the antigen is then introduced, allowing it to be "sandwiched" between the capture antibody and a detection antibody specific for a different region of the same antigen. A labeled secondary antibody or a labeled detection antibody itself can then be used to generate the signal. Sandwich ELISA boasts high sensitivity due to the double-antibody recognition and is often the preferred format for quantifying analytes.
Competitive ELISA: A Race for Binding Sites. In this format, the antigen competes with a labeled antigen (usually a known amount) for binding sites on a capture antibody pre-coated onto the plate. The more antigen present in the sample, the less labeled antigen can bind to the capture antibody. Following a washing step, the amount of bound labeled antigen is measured, providing an inverse relationship between the signal and the concentration of antigen in the sample. Competitive ELISA is particularly useful for studying small molecules that may be difficult to directly conjugate to an enzyme.
ELISA's Reach: From Diagnostics to Research. The applications of ELISA are as vast as they are impressive. Let's delve into some key areas where ELISA plays a vital role:
Unveiling the Mysteries of Disease: Diagnostics: ELISA is a cornerstone of diagnosing infectious diseases like HIV, Hepatitis, and Lyme disease. It detects antibodies produced by the body in response to the invading pathogen, providing valuable information for early detection and treatment. Monitoring Autoimmune Diseases: ELISA helps monitor autoimmune diseases like rheumatoid arthritis and lupus by measuring specific antibodies associated with these conditions. Cancer Screening: Certain cancers can be detected by identifying tumor markers, proteins elevated in the blood of cancer patients. ELISA assays are being developed to detect these markers for early cancer screening.
Safeguarding Food Quality: Allergen Detection: Food allergies can be life-threatening. ELISA ensures food safety by enabling the detection of allergens like peanuts, gluten, and milk in food products, protecting consumers with allergies. Monitoring Foodborne Pathogens: ELISA can identify harmful bacteria, viruses, and toxins in food, preventing outbreaks of foodborne illnesses.
Environmental Monitoring: Pollutant Detection: ELISA can detect pollutants like pesticides and herbicides in water and soil samples, contributing to environmental protection efforts. Microbial Analysis: This technique can be used to identify and quantify specific microbes in environmental samples, providing insights into ecosystem health.
Research and Development: ELISA plays a crucial role in various research fields: Drug Discovery: It helps researchers assess the effectiveness of new drugs by measuring drug-target interactions and monitoring drug levels in the body. Vaccine Development: ELISA is instrumental in developing vaccines by evaluating immune responses to vaccine candidates. Basic Research: Scientists use ELISA to study various biological processes by detecting and quantifying specific molecules involved in these processes.
Despite its established role, ELISA is evolving alongside technological advancements. New multiplex platforms allow for the simultaneous detection of various targets in a single sample, boosting efficiency in biomarker discovery and disease analysis. Automation streamlines workflows minimizes errors, and increases throughput, making high-throughput screening feasible in drug development and clinical settings. Miniaturization and portable devices enable rapid on-site diagnostics, providing healthcare professionals with real-time data for quicker interventions. Additionally, ongoing research is improving assay sensitivity, reducing background noise, and expanding detection limits, allowing for the identification of trace analytes and early disease biomarkers with greater accuracy than ever before. Integration of ELISA with emerging technologies such as microfluidics, nanotechnology, and artificial intelligence holds promise for enhancing assay performance, scalability, and data analysis capabilities.
These advancements hold promise for even wider applications of ELISA in the future. ELISA has revolutionized our ability to detect and quantify biological molecules. Its versatility, accuracy, and adaptability make it an invaluable tool across various scientific disciplines. As research continues to refine and innovate ELISA techniques, we can expect even more exciting possibilities to emerge in the years to come. ELISA's future is bright, promising to play a pivotal role in unraveling the mysteries of the biological world and improving human health.
11 notes · View notes
bpod-bpod · 2 months
Text
Tumblr media
Tumour Environment Effects
Combined immunotherapy (GVAX + anti-PD1) and targeted radiotherapy for pancreatic cancer not only promotes anti-cancer T cells but also immunosuppressive macrophages – insight for skewing therapy towards greater anti-tumour effects
Read the published research article here
Image from work by Junke Wang and Jessica Gai, and colleagues
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Image originally published with a Creative Commons Attribution 4.0 International (CC BY-NC 4.0)
Published in Science Advances, February 2024
You can also follow BPoD on Instagram, Twitter and Facebook
13 notes · View notes
cbirt · 10 months
Link
A recent publication in Nature Journal has presented the TNBC (Triple Negative Breast Cancer) ICI (Immune Checkpoint Inhibitors) response predictive classifier (TNBC-ICI) integrating gene expression profiles of TNBC specimens and artificial intelligence, which has demonstrated a significant performance in identifying TNBC patients who would potentially achieve pCR (Pathological Complete Response) to the chemotherapy treatment supplemented with ICI, opening an avenue to improve the decision making and disease management of patients diagnosed with primary TNBC.
Researchers from the Health Research Institute of the Balearic Islands (IdISBa), Spain, have implemented a random forest machine learning algorithm to construct and evaluate gene expression-based signatures to efficiently predict Pathological Complete Response (pCR) to Immune Checkpoint Inhibitors (ICI) therapy assisted with chemotherapy in patients with primary TNBC treated in the phase II/III I-SPY2 clinical trial that includes clinical and gene expression data. This study involved 188 ICI-naïve and 721 specimens treated with ICI plus chemotherapy.
Here, patients who achieved a pCR or absence of invasive cancer in the breast and regional nodes at the time of surgery were classified as ‘responders,’ whereas those who had residual disease were considered ‘non-responders’ during the classifier construction. The algorithm is applied to select the most informative gene combinations to predict response to ICI in primary TNBC tumors.
Continue Reading
42 notes · View notes
barbi3-bitches · 2 months
Text
Please please help if you can,
Anything will be greatly appreciated!! ❤️
Please share as well, thank you for your kindness in this tough time
6 notes · View notes
eretzyisrael · 10 months
Text
Good News From Israel
In the 18th Jun 23 edition of Israel’s good news, the highlights include:
An Israeli startup can train the brain to filter out chronic pain.
Children with psychological problems receive therapy from Israeli dolphins.
3 Israeli startups have independently developed solutions to cure insomnia.
It’s official - another major Israeli natural gas discovery.
Israel beat Korea to come 3rd in the Under 20 Soccer World Cup.
An Israeli kidney donor ran a marathon alongside the transplant recipient.
Read More: Good News From Israel
Tumblr media
This week's theme is "together". Having just returned from celebrating together with my family, it was uplifting to read so many news articles of Israelis working together, and also with global partners. Ben Gurion Uni is working together with Israel's OncoHost on a cancer biosensor; Tel Aviv Uni has got together with UCLA to treat memory loss; Israel's BioNanoSim is marketing its eye disease treatments together with a Greek manufacturer; and the world's first AI chatbot for cancer patients is called "Beating Cancer Together" from Israel's Belong.Life. Yad Sarah volunteers have together saved Israel billions by providing ancillary medical services; the International Fellowship of Christians & Jews is celebrating 40 years of uniting Jews together with their homeland; for over 30 years, Israeli children have been receiving emotional therapy by swimming together with dolphins. And recently, a record 1,127 Birthright participants enjoyed Shabbat together at Jerusalem's Western Wall. Rarely publicized examples of "togetherness" include Jewish residents of Judea who frequently save the lives of their Palestinian Arab neighbors; the annual Veteran Games between injured UK and Israeli soldiers; and International legislators coming to Israel to strengthen bilateral ties. Israel and Japan have been connecting together at the Israel-Japan Conference in Tokyo; The latest stage of Israel's National Drone network is testing hundreds of commercial UAVs flying together; and Israel's Steakholder Foods and Singapore's Unami Meats are cultivating no-fish fish together. Finally, Israelis have attained some incredible teamwork achievements. The IDF's Special In Uniform Band just performed their 500th show together; Israel's Under 20 soccer team came 3rd in the World Cup; and two Israelis can be considered "joined at the hip" having just completed a unique marathon race together - one of them was a kidney donor, and the other was the recipient of her kidney. The photo is one single poster on the wall of the arrivals hallway at Tel Aviv's Ben Gurion International airport. The two images together show two of the multi-faceted sides of little Israel - busy innovating, while conserving and improving the environment.
14 notes · View notes
geohoneylovers · 9 months
Text
Tumblr media
🐝🍯 Buzzing Breakthrough! 🌟 Immunotherapy Saves the Day for Honey Bees 🌈🦠 Honey bees are facing deadly viruses, but there's a sweet solution! Discover how cutting-edge immunotherapy is coming to the rescue, helping our beloved pollinators build their defenses and thrive. 🌼🐝🌼 Read the buzz-worthy research here: https://geohoney.com/research-detail/immunotherapy-aids-honey-bees-in-resisting-deadly-viruses
13 notes · View notes
Text
How do you beat cancer in a game of chess?
Use checkmate inhibitors.
4 notes · View notes
marmee413 · 1 year
Text
It's Been a Minute
Wow, nearly a year since I posted anything. I hope I haven't lost my three readers.
2022 was a year, wasn't it. Is COVID 19 gone? Is is here and stronger than ever? Seems as if we are on the Carousel of Life (Thank you Joni Mitchell).
My personal journey, lots of money problems and yet we made it through the year. First time I ever met my Out Of Pocket Insuance expenses. November and December were nice not having to pay anything for health care services.
Anyway- from April through at least June I was hardly here. Admitted to a hospital close to my house after the headache thing, then no ability to eat or drink anything (not even vodka!) My abilities to walk just gradually went away by April and a 2nd visit to the ER.
The hospital where the parameds delivered me, from what my oldest tells me because I don't remember details of that visit at all, didn't want to admit me. They convinced the medical staff of my symptoms and that I was losing consciousness more and more and staff finally acquiesced to admitting me. r
After five days of trying to get me to eat and drink, hospital said, she's got to go to a SNF unit (Skilled Nursing Facility). I was no better, I think due to the hospital's negligence-another story-but there I went, to the old folk's home, the place where people go to die, nearly the most humiliating experience of my life.
It was from there, I had a neurosurgeon appointment. The SNF unit's driver, I think his name was Benny the Taxi, got me there, in a most unnerving process.
I tried to talk to the neurosurgeon, attempting to express my symptoms, couldn't think of the titles of some of my specialists, and I must have looked terrible. He said, "it looks to me like you need to be in a real hospital." Nearly crying, I responded with a pitiful, "Yes please!"
Once I was almost immediately admitted to the "real" hospital, so many things happened. I vaguely being taken to tests, many tests, and when in bed, so many blood tests, so many meds. I was pleasantly surprised that staff seemed to really care what happened to me.
Stay tuned...
7 notes · View notes
ucsdhealthsciences · 2 years
Photo
Tumblr media
Chemo-Radio-Immunotherapy Treats Local Cancers, Minimizes Side Effects
In a new study published July 5, 2022 in Nature Communications, researchers at University of California San Diego School of Medicine present a three-prong approach to targeting local cancers while minimizing adverse effects in other parts of the body. The precision cancer therapy combines chemotherapy, radiotherapy and immunotherapy to improve tumor control.
For many cancer patients with local tumors that have not yet spread, the best available treatment plan is a combination of systemic chemotherapy and targeted radiotherapy. Still, it is important to minimize the side effects of this approach.
The research team, led by Sunil Advani, MD, associate professor of radiation medicine at UC San Diego School of Medicine, found that spatially-targeted cytotoxic agents called auristatins can further sensitize tumors to radiation, allowing greater tumor control while simultaneously activating anti-tumor immune responses. While the study was done in mice, the findings suggest that combining these auristatins with radiotherapy and immunotherapy may be a promising step towards spatially precise, biomarker-driven chemo-radio-immunotherapies.
Pictured above: The chemotherapy drug was localized to tumors (yellow circle) over surrounding normal muscle tissue or other organs.
— Nicole Mlynaryk
23 notes · View notes
baytownproject · 1 year
Photo
Tumblr media
“I think people sometimes imagine what it would be like to get a cancer diagnosis. I always imagined I would be really upset, and break down and cry. The most upsetting part was talking to my children. But with the actual diagnosis and the prospect of chemotherapy, I just felt determined to do what the doctors and my family advised. I sort of surrendered control of the situation to them.”
The dull ache in her stomach was actually colon cancer. Following surgery, she completed six months of chemotherapy. Because it was a Lynch syndrome cancer that increased her odds of developing ovarian or endometrial (uterus) cancers, a total hysterectomy was next. Unfortunately, her intestine was nicked during that surgery, which led to sepsis. A followup repair procedure, combined with antibiotics, finally resolved that life-threatening issue. But her cancer journey wasn’t complete, as another slow-growing tumor was found in her abdomen. Doctors opted for a recently approved immunotherapy, which ultimately did the trick.
“It’s been three years since I stopped the immunotherapy. No one who has ever demonstrated a complete response like me has had a recurrence. It’s rare to hear about people with stage 4 who actually survive. So I’m still in a little bit of disbelief all the time. It hits me sometimes harder than others. For several years, I wasn’t worried about planning for retirement. I just didn’t think it was going to happen; you know, that I would get that far. It’s kind of like your life’s been given back to you. It’s hard to know how I would be different now, had all this not happened. What I really can speak to is the closeness of my family. My children are so close, and that wasn’t always the case. I think this whole experience really showed them the value of family and the power of family. The other thing is that you’re not as susceptible to getting upset over the small things in life: the day-to-day stresses and squabbles and disagreements. Things like that are now even more insignificant.”
— Laurie Adcox Haffelfinger
2 notes · View notes
angelnumber27 · 1 year
Text
Tumblr media
Small Molecule Developed That Makes Immunotherapy Available to All Cancer Patients
2 notes · View notes
science-sculpt · 2 months
Text
Tumblr media
The T Cell Landscape
T cells, a critical component of the adaptive immune system, stand as the body's elite force in combatting infections and diseases. These specialized lymphocytes boast remarkable diversity, each type playing a distinct role in orchestrating a targeted and effective immune response.
T cells, like all blood cells, originate from hematopoietic stem cells residing in the bone marrow. However, their training ground lies within the thymus, a specialized organ located in the chest. Here, they undergo a rigorous selection process known as thymocyte education. During this process, immature T cells, called thymocytes, are presented with self-antigens (molecules unique to the body) by special cells. Thymocytes that bind too strongly to these self-antigens are eliminated, preventing them from attacking healthy tissues later. Only thymocytes that demonstrate the ability to recognize foreign invaders while exhibiting tolerance to self are released into the bloodstream as mature T cells.
Following this rigorous training, mature T cells exit the thymus and embark on their patrol, circulating throughout the bloodstream and lymphatic system. They remain vigilant, constantly scanning for their specific targets – antigens. Antigens are foreign molecules, such as fragments of viruses, bacteria, or even cancerous cells, that trigger the immune response.
The hallmark of a T cell is its T cell receptor (TCR), a highly specialized protein complex embedded on its surface. This receptor acts like a lock, uniquely shaped to fit a specific antigen, the "key." Each T cell develops a unique TCR capable of recognizing only a single antigen, enabling a highly specific immune response.
But how do T cells encounter these hidden antigens lurking within infected or cancerous cells? This critical role is played by antigen-presenting cells (APCs). APCs, such as macrophages and dendritic cells, engulf pathogens or abnormal cells, break them down into smaller fragments (peptides), and present them on their surface complexed with major histocompatibility complex (MHC) molecules. MHC molecules act as identification tags, allowing T cells to distinguish between "self" and "non-self." When a T cell's TCR encounters its specific antigen bound to an MHC molecule on an APC, a dance of activation begins. The T cell becomes stimulated, and a cascade of signaling events is triggered. This leads to the T cell's proliferation, producing an army of clones specifically tailored to combat the recognized threat.
T cells are not a single, monolithic entity. They comprise a diverse population, each type with a specialized function:
Helper T Cells (Th Cells):
Helper T cells, often abbreviated as Th cells, play a central role in coordinating immune responses. They express the CD4 surface marker and can recognize antigens presented by major histocompatibility complex class II (MHC-II) molecules. Subtypes of helper T cells include Th1, Th2, Th17, and regulatory T cells (Tregs), each with distinct functions and cytokine profiles.
Th1 cells mediate cellular immunity by activating macrophages and cytotoxic T cells, crucial for defense against intracellular pathogens.
Th2 cells are involved in humoral immunity, promoting B cell activation and antibody production, thus aiding in defense against extracellular parasites.
Th17 cells contribute to the immune response against extracellular bacteria and fungi, producing pro-inflammatory cytokines. Regulatory T cells (Tregs) maintain immune tolerance and prevent autoimmunity by suppressing excessive immune responses.
Cytotoxic T Cells (Tc Cells):
Cytotoxic T cells, also known as Tc cells or CD8+ T cells, are effector cells responsible for directly killing infected or aberrant cells. They recognize antigens presented by MHC class I molecules on the surface of target cells. Upon activation, cytotoxic T cells release perforin and granzymes, inducing apoptosis in target cells and eliminating the threat.
Memory T Cells:
Memory T cells are a long-lived subset of T cells that persist after the clearance of an infection. They provide rapid and enhanced immune responses upon re-exposure to the same antigen, conferring immunological memory. Memory T cells can be either central memory T cells (TCM), residing in lymphoid organs, or effector memory T cells (TEM), circulating in peripheral tissues.
γδ T Cells:
Unlike conventional αβ T cells, γδ T cells express a distinct T cell receptor (TCR) composed of γ and δ chains. They recognize non-peptide antigens, such as lipids and metabolites, and are involved in immune surveillance at epithelial barriers and responses to stress signals.
Beyond the Battlefield: The Expanding Roles of T Cells: The remarkable capabilities of T cells have opened doors for several groundbreaking applications in medicine:
Vaccines: By presenting weakened or inactivated forms of pathogens, vaccines "train" the immune system to generate memory T cells. This prepares the body to recognize and rapidly eliminate the real pathogen upon future exposure, preventing disease.
Cancer immunotherapy: CAR T-cell therapy, a revolutionary approach, genetically engineers a patient's own T cells to express chimeric antigen receptors (CARs) that recognize and target specific cancer cells. These "supercharged" T cells are then reintroduced into the patient, unleashing a potent attack against the tumor.
Autoimmune disease treatment: Researchers are exploring ways to manipulate T cells to suppress harmful immune responses that underlie autoimmune diseases like rheumatoid arthritis and multiple sclerosis.
The diverse array of T cells underscores the immune system's complexity and adaptability in mounting tailored responses against a myriad of threats. From orchestrating immune reactions to maintaining tolerance and establishing long-term immunity, T cells play multifaceted roles in safeguarding the body's health. Understanding the intricacies of T cell biology not only sheds light on immune-mediated diseases but also paves the way for developing novel therapeutic strategies harnessing the power of the immune system.
T cells represent a fascinating aspect of immunology, with their diversity and specificity driving the complexity of immune responses. As research advances, further insights into T cell biology promise to revolutionize immunotherapy and enhance our ability to combat diseases ranging from infections to cancer. By understanding and harnessing their power, we can unlock new avenues for protecting and improving human health.
10 notes · View notes