Tumgik
#El Gordo' by Webb Telescope
blueiskewl · 9 months
Text
Tumblr media
'El Gordo' by Webb Telescope
A new image of the galaxy cluster known as “El Gordo” is revealing distant and dusty objects never seen before, and providing a bounty of fresh science. The infrared image, taken by NASA’s James Webb Space Telescope, displays a variety of unusual, distorted background galaxies that were only hinted at in previous Hubble Space Telescope images.
El Gordo is a cluster of hundreds of galaxies that existed when the universe was 6.2 billion years old, making it a “cosmic teenager.” It’s the most massive cluster known to exist at that time. (“El Gordo” is Spanish for the “Fat One.”)
Image: NASA, ESA, CSA.
167 notes · View notes
jcmarchi · 5 months
Text
‘Teenage Galaxies’ Are Unusually Hot, Glowing With Unexpected Elements - Technology Org
New Post has been published on https://thedigitalinsider.com/teenage-galaxies-are-unusually-hot-glowing-with-unexpected-elements-technology-org/
‘Teenage Galaxies’ Are Unusually Hot, Glowing With Unexpected Elements - Technology Org
Like human teenagers, teenage galaxies are awkward, experience growth spurts and enjoy heavy metal — nickel. 
A Webb telescope image of a galaxy cluster known as “El Gordo,” which is an example of a “cosmic teenager.” Image credit: NASA, ESA, CSA
A Northwestern University-led team of astrophysicists has just analyzed the first results from the CECILIA (Chemical Evolution Constrained using Ionized Lines in Interstellar Aurorae) Survey. This program uses NASA’s James Webb Space Telescope (JWST) to study the chemistry of distant galaxies.  
According to the early results, so-called “teenage galaxies” — which formed two-to-three billion years after the Big Bang — are unusually hot and contain unexpected elements, like nickel, which are notoriously difficult to observe.  
The research was published today (Nov. 20) in The Astrophysical Journal Letters. It marks the first in a series of forthcoming studies from the CECILIA Survey. 
“We’re trying to understand how galaxies grew and changed over the 14 billion years of cosmic history,” said Northwestern’s Allison Strom, who led the study. “Using the JWST, our program targets teenage galaxies when they were going through a messy time of growth spurts and change. Teenagers often have experiences that determine their trajectories into adulthood. For galaxies, it’s the same.” 
One of the principal investigators of the CECILIA Survey, Strom is an assistant professor of physics and astronomy at Northwestern’s Weinberg College of Arts and Sciences and a member of Northwestern’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA). Gwen Rudie, a staff scientist at Carnegie Observatories, co-leads the CECILIA Survey with Strom.
‘Chemical DNA’ gives insight into galaxy formation 
Named after Cecilia Payne-Gaposchkin, one of the first women to earn a Ph.D. in astronomy, the CECILIA Survey observes spectra (or the amount of light across different wavelengths) from distant galaxies.  
“Naming our JWST survey after Cecilia Payne-Gaposchkin was intended to pay homage to her pioneering studies of the chemical makeup of stars,” Rudie said. “Allison and I recognize that our own work revealing the chemistry of these very early galaxies is built upon her legacy.” 
Strom likens a galaxy’s spectra to its “chemical DNA.” By examining this DNA during a galaxy’s “teenage” years, researchers can better understand how it grew and how it will evolve into a more mature galaxy.
For example, astrophysicists still don’t understand why some galaxies appear “red and dead” while others, like our Milky Way, are still forming stars. A galaxy’s spectrum can reveal its key elements, such as oxygen and sulfur, which provide a window into what a galaxy was previously doing and what it might do in the future. 
“These teenage years are really important because that’s when the most growth happens,” Strom said. “By studying this, we can begin exploring the physics that caused the Milky Way to look like the Milky Way — and why it might look different from its neighboring galaxies.” 
In the new study, Strom and her collaborators used the JWST to observe 33 distant teenaged galaxies for a continuous 30 hours this past summer. Then, they combined spectra from 23 of those galaxies to construct a composite picture. 
“This washes out the details of individual galaxies but gives us a better sense of an average galaxy. It also allows us to see fainter features,” Strom said. “It’s significantly deeper and more detailed than any spectrum we could collect with ground-based telescopes of galaxies from this time period in the universe’s history.”  
Spectra surprises 
The ultra-deep spectrum revealed eight distinct elements: Hydrogen, helium, nitrogen, oxygen, silicon, sulfur, argon and nickel. All elements that are heavier than hydrogen and helium form inside stars. So, the presence of certain elements provides information about star formation throughout a galaxy’s evolution.
“JWST is still a very new observatory,” said Ryan Trainor, an associate professor of physics at Franklin & Marshall College and one of the paper’s co-authors. “Astronomers around the world are still trying to figure out the best ways to analyze the data we receive from the telescope.”
Light from 23 distant galaxies, identified with red rectangles in the Hubble Space Telescope image at the top, were combined to capture incredibly faint emission from eight different elements, which are labelled in the JWST spectrum at the bottom. Although scientists regularly find these elements on Earth, astronomers rarely, if ever, observe many of them in distant galaxies. Image credit: Aaron M. Geller, Northwestern, CIERA + IT-RCDS
While Strom expected to see lighter elements, she was particularly surprised by the presence of nickel. Heavier than iron, nickel is rare and incredibly difficult to observe. 
“Never in my wildest dreams did I imagine we would see nickel,” Strom said. “Even in nearby galaxies, people don’t observe this. There has to be enough of an element present in a galaxy and the right conditions to observe it. No one ever talks about observing nickel. Elements have to be glowing in gas in order for us to see them. So, in order for us to see nickel, there may be something unique about the stars within the galaxies.”  
Another surprise: The teenage galaxies were extremely hot. By examining the spectra, physicists can calculate a galaxy’s temperature. While the hottest pockets with galaxies can reach over 9,700 degrees Celsius (17,492 degrees Fahrenheit), the teenage galaxies clock in at higher than 13,350 degrees Celsius (24,062 degrees Fahrenheit). 
“This is just additional evidence of how different galaxies likely were when they were younger,” Strom said. “Ultimately, the fact that we see a higher characteristic temperature is just another manifestation of their different chemical DNA because the temperature and chemistry of gas in galaxies are intrinsically linked.” 
Source: Northwestern University
You can offer your link to a page which is relevant to the topic of this post.
12 notes · View notes
jameswebb-discoveries · 9 months
Text
James Webb Space Telescope Reveals the Enigmatic 'El Gordo' Galaxy Cluster. Read full article here
Tumblr media
Behold the captivating infrared image of the galaxy cluster El Gordo ("the Fat One") captured by Webb, showcasing an array of hundreds of galaxies with unprecedented clarity. Acting as a gravitational lens, El Gordo skillfully bends and amplifies the light from far-off background galaxies, revealing celestial wonders never seen before in such exquisite detail. Among the most prominent features are the lensed background galaxies, The Thin One (highlighted in box A) and The Fishhook (a mesmerizing red swoosh highlighted in box B). The insets on the right offer a closer look at these fascinating objects. Image credits: NASA, ESA, CSA. Full article here
8 notes · View notes
Text
Tumblr media
Titanic galaxy cluster collision in the early Universe challenges standard cosmology
A collision of two massive clusters of galaxies when the Universe was half its current age should not have happened according to the standard theory of cosmology, says a new study by an international group of astronomers, including a physicist at the University of St Andrews.
According to the Lambda-cold dark matter (ΛCDM) standard model of cosmology, galaxies form first and only later combine into larger clusters of galaxies. Thus, galaxy clusters should take a lot of time to appear on the cosmic scene. The new study, published in the Astrophysical Journal, challenges this by showing that two extremely large galaxy clusters collided at a very high speed when the Universe was only about half its current age.
The cluster pair in question is known as El Gordo - which means “The Fat One” in Spanish – an apt name given its mass is about 2000 trillion times that of the Sun (2 followed by fifteen zeroes). The new study uses an updated estimate of its mass that is much more precise. This removes a major source of uncertainty in an earlier study by the same authors about just how problematic El Gordo is for ΛCDM.
The mass was estimated using the deflection of light from background galaxies, whose shape appears distorted thanks to the gravitational pull from El Gordo – a bit like a magnifying glass. This ‘weak lensing’ mass was obtained using the Hubble Space Telescope, but agrees with more recent results from the James Webb Space Telescope and other studies using other methods. The mass now has a modest 10% uncertainty.
The research, led by Elena Asencio, a PhD student at the University of Bonn, used previously published detailed simulations of the interaction to estimate the speed at which the clusters collided. The authors then searched through a less detailed cosmological ΛCDM simulation covering a very large volume to look for simulated cluster pairs. The aim was to count how many of these are broadly analogous to what El Gordo was like shortly before the collision. This was done with an innovative “lightcone tomography” method which considers that more distant objects are viewed further back in time, when there was less structure.
The results revealed that the tension with ΛCDM is very severe for any plausible collision velocity. Moreover, the remaining uncertainty in El Gordo’s mass no longer plays a significant role. 
Elena said: “The results of our previous study were questioned by some scientists once an updated mass estimate for El Gordo was published and came in slightly lower. This does reduce the tension with ΛCDM, but it is still highly significant for any plausible collision velocity. Hundreds of detailed simulations show that El Gordo cannot look like the photos with a much slower collision velocity that could plausibly arise in ΛCDM.”
While it is possible to get a simulation that looks like El Gordo with a more rapid collision, such an event is too rare in ΛCDM. This is because it would be very unusual to find two such massive clusters within striking distance at such an early stage in cosmic history. Further requiring them to be headed towards each other at a high speed stretches credibility. The new study and the more precise mass measurement may lead to more efforts to simulate El Gordo to better understand this enigmatic object.
El Gordo is not the only example of a cluster collision at odds with ΛCDM. Dr Indranil Banik of the School of Physics and Astronomy at St Andrews, who developed the statistical analysis used in this project, said: “The Bullet Cluster is another example of a highly energetic collision between two galaxy clusters, albeit at a later epoch. Taken in combination with El Gordo, the situation becomes even worse for ΛCDM. And several other examples are known and mentioned in our study.”
There are also several studies showing that individual galaxies seem to form much more rapidly than expected in ΛCDM, largely thanks to very recent James Webb data. Of the broader context of the El Gordo results, Pavel Kroupa, Professor at the University of Bonn and Charles University in Prague, said: “There is now a lot of evidence that structure formation in the Universe occurred faster than expected in ΛCDM. We are currently exploring other lines of evidence for this.”
IMAGE....Composite colour image of the interacting galaxy cluster El Gordo, showing X-ray light from NASA's Chandra X-ray Observatory in blue, optical data from the European Southern Observatory's Very Large Telescope in red, green, and blue, and infrared emission from NASA's Spitzer Space Telescope in red and orange. CREDIT X-ray: NASA/CXC/Rutgers/J. Hughes et al; Optical: ESO/VLT & SOAR/Rutgers/F. Menanteau; IR: NASA/JPL/Rutgers/F. Menanteau
0 notes
agreenroad · 9 months
Text
Stunning “El Gordo” Webb Telescope Image is a Bounty of Early Universe Science
Astronomers can piggyback off galaxy clusters, like one called “El Gordo” (The Fat One), to peer deep into the distant universe. The hundreds of galaxies packed together wield a heavy concentration of mass, and if astronomers look towards a cluster on the hunt for sluggish or worm-like features, they might stumble upon light from the ancient…
View On WordPress
0 notes
7ooo-ru · 9 months
Photo
Tumblr media Tumblr media Tumblr media Tumblr media Tumblr media
Телескоп «Джеймс Уэбб» раскрыл тайны в скоплении галактик «Эль-Гордо» благодаря гравитационному линзированию
Телескоп «Джеймс Уэбб» (James Webb Space Telescope) предоставил удивительный новый взгляд на гравитационное искривление галактик в скоплении «Эль-Гордо» (El Gordo). Этот новаторский телескоп, работающий в инфракрасном диапазоне, обнаружил гравитационные искажения, красную гигантскую звезду и множество других космических объектов, которые ранее были недоступны для наблюдения.
Источник изображений: NASA, ESA, CSA
На расстоянии около 9,7 млрд световых лет от Земли расположено очень крупное скопление галактик с массой, эквивалентной примерно 3 млн миллиардов Солнц. Это космическое скопление прозвали El Gordo, что в переводе с испанского означает «Толстяк».
Один из объектов этого скопления известен как «El Anzuelo», или «Рыболовный крючок». Эта галактика, расположенная на расстоянии 10,6 млрд световых лет от нас, хорошо видна в правой верхней части снимка в виде ярко-красной дуги. Чтобы представить себе, насколько поразительна эта новая фотография, можно сказать, что вы видите галактику «Рыболовный крючок» такой, какой она была 10,6 млрд лет назад. Именно столько времени потребовалось, чтобы свет с этого момента жизни галактики достиг телескопа.
На снимке камеры NIRCam наиболее заметными являются две галактики: «Тонкая» (A), расположенная чуть ниже и левее центра изображения, и «Рыболовный крючок» (B) — красное пятно в правом верхнем углу. Обе галактики являются линзированными фоновыми галактиками.
«Мы смогли тщательно изучить пылевую пелену, окутывающую центр галактики, где активно формируются звезды. С помощью телескопа „Джеймс Уэбб“ мы можем с лёгкостью проникнуть сквозь эту плотную завесу пыли, что позволит нам воочию увидеть процесс сборки галактик изнутри», — сказал Патрик Каминески (Patrick Kamieneski) из Университета штата Аризона (ASU), ведущий автор одной из нескольких работ, посвящённых этим наблюдениям.
Но помимо того, что телескоп «Джеймс Уэбб» способен проникать сквозь пылевую завесу благодаря своим камерам ближнего и среднего инфракрасного диапазона (NIRCam и MIRI), новый объектив телескопа, наведённый на «Толстяка», имеет огромное значение, позволяя чётко зафиксировать явление, называемое гравитационным линзированием.
Гравитационное линзирование — это понятие, связанное с общей теорией относительности Альберта Эйнштейна (Albert Einstein). В соответствии с этой теорией пространство и время представляются сплетёнными вместе, как осязаемая ткань, которая может деформироваться и пульсировать в зависимости от того, какие массы в ней присутствуют. Чёрные дыры сильно деформируют эту ткань, звезды влияют на неё тоже довольно сильно, Земля деформирует её в некоторой степени, и даже мы с вами деформируем её в невероятно крошечной, неразличимой степени.
На снимке камеры NIRCam видны сотни галактик, некоторые из них никогда ранее не…
Подробнее https://7ooo.ru/group/2023/08/03/779-teleskop-dzheyms-uebb-raskryl-tayny-v-skoplenii-galaktik-el-gordo-blagodarya-gravitacionnomu-linzirovaniyu-grss-227911767.html
0 notes
newswireml · 1 year
Text
JWST spots smallest galaxy outside our local universe#JWST #spots #smallest #galaxy #local #universe
JWST spots smallest galaxy outside our local universe#JWST #spots #smallest #galaxy #local #universe
The James Webb Space Telescope has glimpsed the smallest galaxy outside our local universe – and it is a thousand times less massive than the Milky Way Space 21 October 2022 By Alex Wilkins The giant El Gordo galaxy cluster has been used to spot a tiny galaxy beyond it NASA/ESA/J. Jee (Univ. of California, Davis)/J. Hughes (Rutgers Univ.)/F. Menanteau (Rutgers Univ. & Univ. of…
Tumblr media
View On WordPress
0 notes
space--bot · 6 years
Photo
Tumblr media
A gargantuan collision
In 2014, astronomers using the NASA/ESA Hubble Space Telescope found that this enormous galaxy cluster contains the mass of a staggering three million billion Suns — so it’s little wonder that it has earned the nickname of “El Gordo” (“the Fat One” in Spanish)! Known officially as ACT-CLJ0102-4915, it is the largest, hottest, and X-ray brightest galaxy cluster ever discovered in the distant Universe.
Galaxy clusters are the largest objects in the Universe that are bound together by gravity. They form over billions of years as smaller groups of galaxies slowly come together. In 2012, observations from ESO’s Very Large Telescope, NASA’s Chandra X-ray Observatory and the Atacama Cosmology Telescope showed that El Gordo is actually composed of two galaxy clusters colliding at millions of kilometres per hour.
The formation of galaxy clusters depends heavily on dark matter and dark energy; studying such clusters can therefore help shed light on these elusive phenomena. In 2014, Hubble found that most of El Gordo’s mass is concealed in the form of dark matter. Evidence suggests that El Gordo’s “normal” matter — largely composed of hot gas that is bright in the X-ray wavelength domain — is being torn from the dark matter in the collision. The hot gas is slowing down, while the dark matter is not.
This image was taken by Hubble’s Advanced Camera for Surveys and Wide-Field Camera 3 as part of an observing programme called RELICS (Reionization Lensing Cluster Survey). RELICS imaged 41 massive galaxy clusters with the aim of finding the brightest distant galaxies for the forthcoming NASA/ESA/CSA James Webb Space Telescope (JWST) to study.
https://www.spacetelescope.org/images/potw
30 notes · View notes
spaceexp · 6 years
Text
Hubble Weighs in on Mass of Three Million Billion Suns
NASA - Hubble Space Telescope patch. Jan. 16, 2018
In 2014, astronomers using the NASA/ESA Hubble Space Telescope found that this enormous galaxy cluster contains the mass of a staggering three million billion suns — so it’s little wonder that it has earned the nickname of “El Gordo” (“the Fat One” in Spanish)! Known officially as ACT-CLJ0102-4915, it is the largest, hottest, and brightest X-ray galaxy cluster ever discovered in the distant Universe. Galaxy clusters are the largest objects in the Universe that are bound together by gravity. They form over billions of years as smaller groups of galaxies slowly come together. In 2012, observations from ESO’s Very Large Telescope, NASA’s Chandra X-ray Observatory and the Atacama Cosmology Telescope showed that El Gordo is actually composed of two galaxy clusters colliding at millions of kilometers per hour. The formation of galaxy clusters depends heavily on dark matter and dark energy; studying such clusters can therefore help shed light on these elusive phenomena. In 2014, Hubble found that most of El Gordo’s mass is concealed in the form of dark matter. Evidence suggests that El Gordo’s “normal” matter — largely composed of hot gas that is bright in the X-ray wavelength domain — is being torn from the dark matter in the collision. The hot gas is slowing down, while the dark matter is not.
Hubble Space Telescope (HST). Animation Credit: NASA
This image was taken by Hubble’s Advanced Camera for Surveys and Wide-Field Camera 3 as part of an observing program called RELICS (Reionization Lensing Cluster Survey). RELICS imaged 41 massive galaxy clusters with the aim of finding the brightest distant galaxies for the forthcoming James Webb Space Telescope to study. For more information about Hubble, visit: http://hubblesite.org/ http://www.nasa.gov/hubble http://www.spacetelescope.org/ Image, Animation. Credits: ESA/Hubble & NASA, RELICS/Text Credits: European Space Agency/NASA/Karl Hille. Best regards, Orbiter.ch Full article
20 notes · View notes
wigmund · 6 years
Photo
Tumblr media
From SpaceTelescope.Org Picture of the Week; January 8, 2018:
A Gargantuan Collision
In 2014, astronomers using the NASA/ESA Hubble Space Telescope found that this enormous galaxy cluster contains the mass of a staggering three million billion Suns — so it’s little wonder that it has earned the nickname of “El Gordo” (“the Fat One” in Spanish)! Known officially as ACT-CLJ0102-4915, it is the largest, hottest, and X-ray brightest galaxy cluster ever discovered in the distant Universe.
Galaxy clusters are the largest objects in the Universe that are bound together by gravity. They form over billions of years as smaller groups of galaxies slowly come together. In 2012, observations from ESO’s Very Large Telescope, NASA’s Chandra X-ray Observatory and the Atacama Cosmology Telescope showed that El Gordo is actually composed of two galaxy clusters colliding at millions of kilometers per hour.
The formation of galaxy clusters depends heavily on dark matter and dark energy; studying such clusters can therefore help shed light on these elusive phenomena. In 2014, Hubble found that most of El Gordo’s mass is concealed in the form of dark matter. Evidence suggests that El Gordo’s “normal” matter — largely composed of hot gas that is bright in the X-ray wavelength domain — is being torn from the dark matter in the collision. The hot gas is slowing down, while the dark matter is not.
This image was taken by Hubble’s Advanced Camera for Surveys and Wide-Field Camera 3 as part of an observing programme called RELICS (Reionization Lensing Cluster Survey). RELICS imaged 41 massive galaxy clusters with the aim of finding the brightest distant galaxies for the forthcoming NASA/ESA/CSA James Webb Space Telescope(JWST) to study.
Credit: ESA/Hubble & NASA, RELICS
3 notes · View notes
7ooo-ru · 9 months
Photo
Tumblr media
Телескоп «Джеймс Уэбб» раскрыл тайны в скоплении галактик «Эль-Гордо» благодаря гравитационному линзированию
Телескоп «Джеймс Уэбб» (James Webb Space Telescope) предоставил удивительный новый взгляд на гравитационное искривление галактик в скоплении «Эль-Гордо» (El Gordo). Этот новаторский телескоп, работающий в инфракрасном диапазоне, обнаружил гравитационные искажения, красную гигантскую звезду и множество других космических объектов, которые ранее были недоступны для наблюдения. Источник изображений: NASA, ESA, CSA
Подробнее https://7ooo.ru/group/2023/08/03/403-teleskop-dzheyms-uebb-raskryl-tayny-v-skoplenii-galaktik-el-gordo-blagodarya-gravitacionnomu-linzirovaniyu-grss-227912339.html
0 notes
Text
Tumblr media Tumblr media
Webb spotlights gravitational arcs in ‘El Gordo’ galaxy cluster
A new image of the galaxy cluster known as “El Gordo” is revealing distant and dusty objects never seen before, and providing a bounty of fresh science. The infrared image, taken by NASA’s James Webb Space Telescope, displays a variety of unusual, distorted background galaxies that were only hinted at in previous Hubble Space Telescope images.
El Gordo is a cluster of hundreds of galaxies that existed when the universe was 6.2 billion years old, making it a “cosmic teenager.” It’s the most massive cluster known to exist at that time. (“El Gordo” is Spanish for the “Fat One.”)
The team targeted El Gordo because it acts as a natural, cosmic magnifying glass through a phenomenon known as gravitational lensing. Its powerful gravity bends and distorts the light of objects lying behind it, much like an eyeglass lens.
“Lensing by El Gordo boosts the brightness and magnifies the sizes of distant galaxies. This lensing effect provides a unique window into the distant universe,” said Brenda Frye of the University of Arizona. Frye is co-lead of the PEARLS-Clusters branch of the Prime Extragalactic Areas for Reionization and Lensing Science (PEARLS) team and lead author of one of four papers analyzing the El Gordo observations.
The Fishhook
Within the image of El Gordo, one of the most striking features is a bright arc represented in red at upper right. Nicknamed “El Anzuelo” (The Fishhook) by one of Frye’s students, the light from this galaxy took 10.6 billion years to reach Earth. Its distinctive red color is due to a combination of reddening from dust within the galaxy itself and cosmological redshift due to its extreme distance.
By correcting for the distortions created by lensing, the team was able to determine that the background galaxy is disk-shaped but only 26,000 light-years in diameter – about one-fourth the size of the Milky Way. They also were able to study the galaxy’s star formation history, finding that star formation was already rapidly declining in the galaxy’s center, a process known as quenching.
“We were able to carefully dissect the shroud of dust that envelops the galaxy center where stars are actively forming," said Patrick Kamieneski of Arizona State University, lead author on a��second paper. "Now, with Webb, we can peer through this thick curtain of dust with ease, allowing us to see firsthand the assembly of galaxies from the inside out."
The Thin One
Another prominent feature in the Webb image is a long, pencil-thin line at left of center. Known as “La Flaca” (the Thin One), it is another lensed background galaxy whose light also took nearly 11 billion years to reach Earth.
Not far from La Flaca is another lensed galaxy. When the researchers examined that galaxy closely, they found a single red giant star that they nicknamed Quyllur, which is the Quechua term for star.
Previously, Hubble has found other lensed stars (such as Earendel), but they were all blue supergiants. Quyllur is the first individual red giant star observed beyond 1 billion light-years from Earth. Such stars at high redshift are only detectable using the infrared filters and sensitivity of Webb.
“It's almost impossible to see lensed red giant stars unless you go into the infrared. This is the first one we’ve found with Webb, but we expect there will be many more to come,” said Jose Diego of the Instituto de Física de Cantabria in Spain, lead author of a third paper on El Gordo.
Galaxy Group and Smudges
Other objects within the Webb image, while less prominent, are equally interesting scientifically. For example, Frye and her team (which includes nine students from high school to graduate students) identified five multiply lensed galaxies which appear to be a baby galaxy cluster forming about 12.1 billion years ago. There are another dozen candidate galaxies which may also be part of this distant cluster.
“While additional data are required to confirm that there are 17 members of this cluster, we may be witnessing a new galaxy cluster forming right before our eyes, just over a billion years after the big bang,” said Frye.
A final paper examines very faint, smudge-like galaxies known as ultra-diffuse galaxies. As their name suggests, these objects, which are scattered throughout the El Gordo cluster, have their stars widely spread out across space. The team identified some of the most distant ultra-diffuse galaxies ever observed, whose light traveled 7.2 billion years to reach us.
“We examined whether the properties of these galaxies are any different than the ultra-diffuse galaxies we see in the local universe, and we do actually see some differences. In particular, they are bluer, younger, more extended, and more evenly distributed throughout the cluster. This suggests that living in the cluster environment for the past 6 billion years has had a significant effect on these galaxies,” explained Timothy Carleton of Arizona State University, lead author on the fourth paper.
“Gravitational lensing was predicted by Albert Einstein more than 100 years ago. In the El Gordo cluster, we see the power of gravitational lensing in action,” concluded Rogier Windhorst of Arizona State University, principal investigator of the PEARLS program. “The PEARLS images of El Gordo are out-of-this-world beautiful. And, they have shown us how Webb can unlock Einstein's treasure chest.”
The paper by Frye et al. has been published in the Astrophysical Journal. The paper by Kamieneski et al. has been accepted for publication in the Astrophysical Journal. The paper by Diego et al. has been published in Astronomy & Astrophysics. The paper by Carleton et al. has been accepted for publication in the Astrophysical Journal.
The James Webb Space Telescope is the world's premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
TOP IMAGE....Webb’s infrared image of the galaxy cluster El Gordo (“the Fat One”) reveals hundreds of galaxies, some never before seen at this level of detail. El Gordo acts as a gravitational lens, distorting and magnifying the light from distant background galaxies. **Download the full-resolution version from the Space Telescope Science Institute. CREDIT NASA, ESA, CSA. Science: Jose Diego (Instituto de Física de Cantabria), Brenda Frye (University of Arizona), Patrick Kamieneski (Arizona State University), Tim Carleton (Arizona State University), and Rogier Windhorst (Arizona State University). Image processing: Alyssa Pagan (STScI), Jake Summers (Arizona State University), Jordan D’Silva (University of Western Australia), Anton Koekemoer (STScI), Aaron Robotham (University of Western Australia), and Rogier Windhorst (Arizona State University).
LOWER IMAGE....Two of the most prominent features in the image include the Thin One, highlighted in box A, and the Fishhook, a red swoosh highlighted in box B. Both are lensed background galaxies. The insets at right show zoomed-in views of both objects. Image: NASA, ESA, CSA. Science: Jose Diego (Instituto de Física de Cantabria), Brenda Frye (University of Arizona), Patrick Kamieneski (Arizona State University), Tim Carleton (Arizona State University), and Rogier Windhorst (Arizona State University). Image processing: Alyssa Pagan (STScI), Jake Summers (Arizona State University), Jordan D’Silva (University of Western Australia), Anton Koekemoer (STScI), Aaron Robotham (University of Western Australia), and Rogier Windhorst (Arizona State University).
0 notes
Photo
Tumblr media
Hubble weighs in on mass of 3 million billion suns In 2014, astronomers using the NASA/ESA Hubble Space Telescope found that this enormous galaxy cluster contains the mass of a staggering three million billion suns -- so it's little wonder that it has earned the nickname of "El Gordo" ("the Fat One" in Spanish)! Known officially as ACT-CLJ0102-4915, it is the largest, hottest, and brightest X-ray galaxy cluster ever discovered in the distant Universe. Galaxy clusters are the largest objects in the Universe that are bound together by gravity. They form over billions of years as smaller groups of galaxies slowly come together. In 2012, observations from ESO's Very Large Telescope, NASA's Chandra X-ray Observatory and the Atacama Cosmology Telescope showed that El Gordo is actually composed of two galaxy clusters colliding at millions of kilometers per hour. The formation of galaxy clusters depends heavily on dark matter and dark energy; studying such clusters can therefore help shed light on these elusive phenomena. In 2014, Hubble found that most of El Gordo's mass is concealed in the form of dark matter. Evidence suggests that El Gordo's "normal" matter -- largely composed of hot gas that is bright in the X-ray wavelength domain -- is being torn from the dark matter in the collision. The hot gas is slowing down, while the dark matter is not. This image was taken by Hubble's Advanced Camera for Surveys and Wide-Field Camera 3 as part of an observing program called RELICS (Reionization Lensing Cluster Survey). RELICS imaged 41 massive galaxy clusters with the aim of finding the brightest distant galaxies for the forthcoming James Webb Space Telescope to study.
1 note · View note
Photo
Tumblr media
A gargantuan collision In 2014, astronomers using the NASA/ESA Hubble Space Telescope found that this enormous galaxy cluster contains the mass of a staggering three million billion Suns — so it’s little wonder that it has earned the nickname of 'El Gordo' ('the Fat One' in Spanish)! Known officially as ACT-CLJ0102-4915, it is the largest, hottest, and X-ray brightest galaxy cluster ever discovered in the distant Universe. Galaxy clusters are the largest objects in the Universe that are bound together by gravity. They form over billions of years as smaller groups of galaxies slowly come together. In 2012, observations from ESO’s Very Large Telescope, NASA’s Chandra X-ray Observatory and the Atacama Cosmology Telescope showed that El Gordo is actually composed of two galaxy clusters colliding at millions of kilometres per hour. The formation of galaxy clusters depends heavily on dark matter and dark energy; studying such clusters can therefore help shed light on these elusive phenomena. In 2014, Hubble found that most of El Gordo’s mass is concealed in the form of dark matter. Evidence suggests that El Gordo’s “normal” matter — largely composed of hot gas that is bright in the X-ray wavelength domain — is being torn from the dark matter in the collision. The hot gas is slowing down, while the dark matter is not. This image was taken by Hubble’s Advanced Camera for Surveys and Wide-Field Camera 3 as part of an observing programme called RELICS (Reionization Lensing Cluster Survey). RELICS imaged 41 massive galaxy clusters with the aim of finding the brightest distant galaxies for the forthcoming NASA/ESA/CSA James Webb Space Telescope (JWST) to study. Copyright ESA/Hubble & NASA, RELICS CC BY 4.0
1 note · View note