Tumgik
#α::|| *sp
ofspvrta · 3 months
Text
Tumblr media
A good myth is hard to kill.
#OFSPVRTA indie | private | selective | mutuals only kassandra of sparta from assassin’s creed series.  18+ only. penned by ikaros.
25 notes · View notes
aztomicc · 1 month
Text
Liberação de bios no estilo natural. Os créditos são totalmente de @aztomicc. Caso use algo, dê ib nos storys.
𝒇͟𝒊͟𝒐͟𝒔 de sol 🌞 α beırα 𝘔𝘈𝘙
— vıvendo de poemαs . 𝗽𝗼𝗲𝘀𝗶𝘀𝗮𝘀
seus 𝒐𝒍𝒉𝒐𝒔 𖤓 meu clarão @dengo
𝚁𝙹 — sp e 𝐯͟𝐢͟𝐯͟𝐢͟𝐝͟𝐞͟𝐧͟𝐜͟𝐢͟𝐚͟ ⛵️ por registros
𝘝𝘓𝘖𝘎 [ 🐝 ] de uma morᥱᥒᥲ da moda !
tu e teus versos @meudengo
𝗗𝗔𝗭𝗭 cα̂merα 📸 𝑓𝑝𝑠𝟻𝟶 { 좋은 인생 }
⡷ eu quero estar em teu 𝗼𝗹𝗵𝗮𝗿 . 🪬
flores de 𝑇͟𝑈͟𝐿͟𝐼͟𝑃͟𝐴͟𝑆 e melodias @amour
ao som ‘ 🎶 de 𝐵𝐴𝐶𝑂 & 𝗷𝗮̃𝗼
𝙼𝙿𝙱 e ternura de você @meudengo
— rj 𝙢𝙤𝙧𝙖𝙙𝙞𝙖 🌻 docil e 𝓉͟𝓇͟𝒶͟𝓃͟𝓆͟𝓊͟𝒾͟𝓁͟𝒶
eu e tu, 🔆 𝓼𝓸𝓵 lua exagerada @amour
𝗩𝗦𝗖𝗢, mar&𝐬𝐢𝐚 com tua companhia 🏖️
84 notes · View notes
tszzphel · 10 months
Text
ㅤㅤㅤㅤㅤ
🦪⃞ㅤㅤ꒰ྀི >< ꒱ㅤ ..ㅤ 사꯭랑 ⪩ ⪩ ♡
pαck dᧉ bꪱos, fᧉꪱto orꪱgꪱnαlmᧉntᧉ
pᧉlo dᧉsꪱgnᧉr ɥᧉonlαplᧉcᧉ
com ꪱspꪱraçα̃o nα músꪱcα dα𝗻gᧉrou𝘀𝗹ɥ
dᧉ Chαrlꪱᧉ Puth.
nα̃o sᧉrά obrꪱgαtórꪱo α dᧉꪱxα dos crᧉ́dꪱtos
ao usαr, mαs αo rᧉpαssαr pᧉço quᧉ por fαvor
dᧉꪱxᧉ mᧉus dᧉvꪱdos crᧉ́dꪱtos.
ㅤㅤㅤㅤ ㅤ ㅤ꒰ྀི ◠◠ ꒱
𓏸○ㅤㅤ🐚⃝ㅤ ㅤꔫㅤㅤknᧉ𝘄 𝘄ᧉ 𝘄o᷼u𝗹᷼𝗱 crα𝘀hㅤ ✿ ꒰ྀི  ´ `   ꒱ㅤ◞◞ㅤ꒰ αt thᧉ 𝘀᷼p᷼ᧉ᷼ᧉd thαt ꒱ㅤ Ⳋৎㅤ 𝘄ᧉ 𝘄ᧉr᷼ᧉ goꪱngㅤ⪩ ⪩ ㅤ✧
✿ ୨୧ ♡ ꒰ ꪱ lovᧉ ɥ𝗼u, ꪱ lo᷼𝘃᷼ᧉ ɥou, ꪱ l𝗼vᧉ ɥ𝗼u ꒱ 🌷̷ ◡ dα𝗻𝗴ᧉ᷼r᷼o᷼u᷼𝘀lɥㅤ꒰ ◌ ◞ ◟ ꒱
୨୧ㅤ ✿ㅤ ꒰ྀི ´` ꒱ㅤ 𝗱ꪱdn't cα᷼rᧉ ꪱf thᧉ ᧉxp𝗹᷼o᷼s᷼ꪱ𝗼n ruꪱ᷼n᷼ᧉd mᧉㅤ 🩰⃞ㅤ 𓏸○ ꔫ bαabɥ, ꪱ lo᷼v᷼ᧉd ɥ𝗼𝘂 dα𝗻gᧉr᷼o᷼u𝘀𝗹ɥ ㅤ♡ㅤ ꒱
🪞᷼ㅤ ✿ㅤ ◠ㅤ ꒰꒰ ɥ𝗼𝘂'vᧉ w𝗼᷼𝗸᷼ᧉ᷼n 𝗺ᧉㅤ꒰˵> ˕ <˵꒱ㅤ but ɥ𝗼𝘂'rᧉ cho᷼k᷼ꪱ᷼n᷼g mᧉㅤ ✧ㅤ ୨ㅤ 𓏸○
꒰꒰ㅤ🦴⃝ ㅤ ⪩ּ⪨ (ㅤꪱ lo𝘃ᧉ ɥ𝗼𝘂 dα𝗻᷼𝗴᷼ᧉ᷼r᷼ou𝘀lɥㅤ)ㅤ꒰ྀི ⸝⸝⸝ ꒱ ୨୧ ㅤ m𝗼rᧉ thαn thᧉ ꪱ br᷼ᧉ᷼α᷼thᧉㅤ✿ ୨୨
ㅤㅤㅤㅤ ㅤ ©ɥᧉonlαplᧉcᧉ
291 notes · View notes
yukies-world · 2 years
Text
Indie pack 🧚‍♀️
Where to get cafe sounds:
Positivitsounds
Aestheticsoundforfp
Lvshsoundz
Milkteaudios
Lxser.things
Savvatunes
Pinterest accs that has uzzlang girls + for your pfp!
Jixly_ (recommended)
Blckkchizs
Httpsyoonie.com
Indie pastel
F4iryiziee
Yeonxsha
Ivxfia
Eufxriz
Winkygeal
Ivx.danie
F4iryyyalexa
Lqvsrea
Username:
_styfie03
F4iry_unnie3
Ellie.cxlm
Sparkle.blooms
Cxziee.cks
Eufxiryx
Vxwie
Iqzvcy
Iqsoveoulxs
Zaryqtie
Ivxsanna
Luvqluvxs
Hazvxel
Icvyuriii
Qcsvzeol
Lqvgrowiee
Ivxfxirizz
Yurixx.com
Elq.shinie
Good.plzy
bios
۫ ּ ֗ ִ ♡ ּ ִ ۫
𖥻 c c : m e ៹
⤿ ִׄ ﹡🐇 ۰ ࣪ ˖
⋅ no spam ! —
ᵕ༚ᵕ she / her ៸៸ ♡
— stay safe !! ꒱
✿ lollipop land ! 🍭
૮꒰ ˶• ༝ •˶꒱ა ilysm <3
• 🪐 she ➵ her <8 ꒱꒱
💀ུ۪۪ _ ��anpage ⌗
❲ > - < ❳ ❱ ✿•
🎧 ⤖ give tc & cc -❕༊
⤛ ᰔ ⸝⸝ ❲ ily ! — 🎬
،، › ࣪˖ ⌕ 🦓 : “ ily ” ˖ ࣪ 𖥔
Ꮺ ° ♡̷̸ char bae ˃̵ࡇ˂̵
⌕ 🎬 ◖ dunkin ☆ 𓄼
֗ ִ ּ ۪ cc :: me ་. ᶻᶻ ꒱
⤿ ִׄ ﹡ ֺ dunkin > ꒱꒱ ៸៸
﹡꒷ . ˚₊ ilysm ʚĭɞ ₊ ˚.
❀ - cc : me ˚.꒷ .☂️
₊˚ ୨ ♡ ୧ ˚₊
⤿ ִׄ ﹡ cc : mee !
꒦꒷꒦꒷ idk who <3 💘
. ་ ˖ ׂ she / herׅ ⊹ ⬫
౨ৎ ˚· charli ֺ ⬫ ꒱ 🌷
ılı ֺ ۪ cc : mee ! ⋆ ˚✿
🐆 ˚₊ < idk 3 ⬫ ˚
꒰ ꒰ 📼 d u n k i n
𝐚 = tloml ! ! — ୨୧
✿ • 𝐜 𝐫 𝐞 𝐝 𝐬 : me
౨ৎ ˚· cc : tiff ֺ ⬫ ꒱ 🍩
ılı ֺ ۪ idk : ♡ ᵎᵎ ⋆ ˚ ✿
💗 ˚₊ 𝕞𝞈αん ⬫ ˚ .
⤖ ily 🐳 ⤛ ⚓︎ ˚ ⊹
ᰔ char is bae 🌷
⊹ ·˚ 🪐 cc : me ꒱
. ࣪ 𓂃 🕯 welcome ⋆ ࣪
𖠗 🥟 dunkies ۫ . ֗ 𓊔
᳝ ࣪ 𓊌 𝐜𝐜 ⊹ mee ! 𖦆 🍨
👚 𓈈 ⋆ ˖ ࣪ ୨ৎ ࣪˖ ⋆
ᐢ..ᐢ ᰍ 𝕞𝞈αん 𓈀
💐 ꒱꒱ < 3 ✩ ֢ ৎ୭ ❲ ily ❱
ꕀ ࣪˖ 👚 ៸៸ α = ml ♡ 𓂅
﹆ 𝐜𝐜 : ninosunkin 💋
• – 🐝 dunkin ʚĭɞ ˙ ˖
ꕀ 𓈒 ˙ ˖ idk who : <3 🍦
୨𓈒˙ ˖ 𝕞𝞈αん 💋 ˳ ֹ 𝅄
👼🏻 𓈒 𓏸 𓄲 charli ! ⌗
— ꒰ 🍬 ꒱ dont sp ♡
𖠗 ⤛ tc : me 𓊔 • ılı
⌗ tc + cc : ems 🦙
✿𝆬 ˖ 👼🏻 ♡ dunkin !
ִ ་ . ꒱ ° love u — 🍰
꒰ 💍 || acc ib : ??
𝐚 = tloml — ୨୧ ˳ ֹ 𝅄 𓄼
⤿ ִׄ ﹡ 𝕞𝞈αん 💘 𓂅
꒰꒰ she/hers 𓂃 ˳ ֹ 𝅄
🩰 🦢🕯🎧 ୨୧ 𓄼
⤿ ִׄ ﹡ ֺ cc + tc : me ꒱꒱ ៸៸
﹡꒷ . ˚₊ < idk 3 ʚĭɞ ₊ ˚.
୨୧ 𓄼 𝕞𝞈αん ⊹ ֺ 🍡
🏝⌇⌗ ⭒ ֢ ৎ୭ ❲ hii ❱
⤜ 𖧧 𖤣 ˖ she/her◞ Ꮺ
° ♡̷̸ 𖥻 ˑ cc : me 🌴 ៸៸
she / hers !! ˖ ࣪ ‹
𝓒c + tc : me ₊˚✧
charli = bæ ៹ ꒺
⌜ 🌷 ⌟ she / hers
ʚ 𝐜𝐜 + 𝐭𝐜 : me !! ɞ
·˚ ༘ ┊c = bæ 🖇
🌴 ꒱ charli loml – ɞ
creds : jojo ılı 🐬 ♡
𓏲 spams = 🙅🏻‍♀️ ⚓︎
𖥻 𝐦𝐮𝐥𝐭𝐢𝐞𝐬 🐬⤛ ˚ ⊹
ᰔ she // hers 🌴﹢࣪
⊹ ·˚ tc + cc : me ꒱ 𓄼
🐟 ៸៸˚ 환영하다
ᥒ᥆𝗍 ꪱꭑ⍴ᥱrઽ᥆ᥒᥲ𝗍ꪱᥒg 🐋
ძ᥆ᥒ𝗍 ઽ𝗍ᥱᥲℓ !
ᥕᥱᥣᥴ͠᥆mᥱ !¡ 🌮
#savetheearth ! 🌎
🍓 ; ყ᥆ᥙr ⍴rᥱttყ !
♡ ݂ 𝆬🍡 ⍵ᥱᥣᥴ᥆ꭑᥱ
✿ ઽtᥲყ ઽᥲfᥱ 💐  ּ ͈
៸៸  🌷 ⍵ჩᥲt ꪱ᥉ ᥣ᥆᥎ᥱ
⍵ᥱᥣᥴⱺꭑᥱ !¡
✦ - ძ᥆ᥒ𝗍 ઽtᥱᥲℓ 🍶 ˎˊ˗
💬 ⌯ ꪱᥒძꪱᥱ fᥱᥱძ ꒱ ִ ׁ ᰍ
ャ 🍶 𖧧 ᥲᥣᥣ ᥕᥱᥣᥴ᥆͠mᥱ
𝔗 ִֶָ  💐 ᥱᥣᥱ᥎ᥱᥒ 𖥔 ࣪˖
💬 ℓ᥆᥎ᥱℓყ ⍴ℓᥲᥴᥱ ¡! ១
Font pack:
Kghappy
Sugarpunchdemo
No virus
Kind heart
Cookie
Candy butterfly
Lemon milk
Little comet
Love
Reglise
Stanberry
Winkle
Subway circle
Stabillo
Cheri
Black bubble
Bubblegum
Candy beans
Cheeky rabbit
Hug me thight
Cocola
Kghappy solid
Content ideas:
Coloring tutorial
Assistive touch tutorial
How to have ios emoji
How to have ios keyboard
Apps that can help you study
Guys i did it
Wallpaper reveal
Acc giveaway
Font recomendation
Pinterest keywords
How to private your following list
Game recomendstion
How to put fonts on capcut
Border tutorial
Im addicted to..
How to add link in bio
Color text in phonto tutorial
captions
◜。 ࣪⊹ — ❝ caption ! ⊹ 🕊 ࣪ ⭒ ׅ ׂ 𓈒 ꢆ 𓈒֢ ֺ ۪ 𖦆🧺*°࿐ vc • ➷。 #### ᮫ ꒱꒱ — ೃ ۪♡̶
🌷 ⭒ ֢ // ⌗𓈒𓏸 𖠿 ⸝⸝《 caption 》! ⤜ cc : me ! ⤛ ︎🌴 𝗍𝖺𝗀𝗌 - #
⩇ ⩇ ་ ۫ ּ✦ ⟆ caption ⋆ 𖡜̸ ˖˚🕊 ៸៸ ۰. ݁ 𝚃𝙰𝙶𝚂: # # # ꒱꒱ ꗃ 🍡 ʚ — love, # _ ☆👛
ᯥ ✦ ⊹˚˖⁺ 🥥【 ⌗ caption ! 】☀️ , m σ σ ԃ : 😕 , ★ ᨒ —🧖🏽‍♀️ 𖦆 #
𓎩𓌉┊ 🛍 𓏸𓈒 cαption ⬫ִׄ 𓄹 🧖🏽‍♀️ 𓊆 cc : me 𓊇 ⚓︎ тαgs ⤖# # # # # 𓄹┊xoxo - ____ 𓈒𓏸┊⌗hi
— 🍉 ✦ ࣪ ˖ 【 ⌗ caption 】★ 🐬 𓂅 @___ 」𖤘 🥂 taggies ! 𖥔 ࣪˖ ⋆ 𖦆 › #
✉️: 𓆩❤︎𓆪 ❝ caption ! ❞ 𖥵⑅𖥵 𓇇 ⵓ ⌗tags: #
˖ ◞ ⨳ 🍵 ˖ ࣪ ˖ ࣪ caption ! <3 ✧༚ 𖠗 ☁️ ⌇ ⨳ ˖ ৎ ♡ # # # # # # # 𝚆𝚆𝚆.𝚃𝚃.𝙲𝙾𝙼
𖠗 𐚱 𖨂 caption ! . ‧₊˚︴᪥ 𝘃𝗰 __ ៹ ɞ ┆┆⌕ 𝐢𝐛 @ ៸៸┊ 𒀭 ◠ ◠ ◗ 𝐭𝐚𝐠𝐠𝐢𝐞𝐬 - #
،، › ࣪˖ ⌕ 🦓 : 𓊆 𝓒aption ! 𓊇 ˖ ࣪ 𖥻 ➿ ぃ ˑ ⌨︎ vc : char <3 ะ ♧︎⌇tαggιes ⸝⸝ 𖤘
summer caption !! 🍉⌇ ❝ anything ❞ 『 @charlidamelio 』⌇ ✿ ·˚ ༘ taggies — 🌴🏝
⎙𓈓(𝚌𝚊𝚙𝚝𝚒𝚘𝚗𝚜) 🍄⌇🖇️: 𝚒𝚋:⌇𖧧𖤣 🌿𝚝𝚊𝚐𝚐𝚒𝚎𝚜
⌗🌷 (𝐜𝐚𝐩𝐭𝐢𝐨𝐧𝐬) ✧゜  ⌗🍡𝐢𝐛:     ⌗💭𝐭𝐚𝐠𝐠𝐢𝐞𝐬:
『💒CᴀᴘᴛɪOɴs』『🌱ɪB:』『📝ᴛAɢɢɪEs:』
✎ ℂ𝚊𝚙𝚝𝚒𝚘𝚗: ⸾🍉⸾ 𝕀𝚋: ⸾ 𝕋𝚊𝚐𝚐𝚒𝚎𝚜:
🥥» ᴄᴀᴘᴛɪᴏɴs « 💐   ɪʙ: 🍒ᴛᴀɢɢɪᴇs:
𝗰𝗮𝗽𝘁𝗶𝗼𝗻 ⏰- : 𝗮𝗺/𝗽𝗺 🗓- ||💭🌷🩰📝
𝘾aptions 🍒⌇ 💐『 𝙄b:』⌇ ✿ ·˚ ༘ 𝙩aggies — 🕊️🌿
⤜ 🕊️caption here 🩰⤛ 𓈈 ⌗ 𝗶𝗯:
🌷:: (captions here) :: 💭🩰⌗𝐢𝐛: 🩰⌗𝐭𝐚𝐠𝐬:
🩰•💭» (ᴄᴀᴘᴛɪᴏɴs)  •🌷»ɪʙ: •🍒»ᴛᴀɢs:•
«💭» (𝚌𝚊𝚙𝚝𝚒𝚘𝚗𝚜) «🌷» 𝚒𝚋: «🩰» 𝚝𝚊𝚐𝚜:
🌷 ❝ (caption)❝ 𓈈 s/o⌇🩰⌇𖧧𖤣 tags: 𓍯 ib:
⌗🩰:: (captions) | ⚓︎ ⌞🌷𝗏𝖼 💭 : ⌝ ⊹˚˖⁺ | 𝗍𝖺𝗀𝗀𝗂𝖾𝗌 :
🌷𖥻 ✿• ℘ (captions) 🍒  ⌞𝗌/𝗈 : ⌝ 𝗏𝖼 :idol ⊹˚| 𝗍𝖺𝗀𝗌 :
💭 ·。 ༘ ┊(𝐜𝐚𝐩𝐭𝐢𝐨𝐧𝐬)┊  ılı.ıllı.┊𝐢𝐛:┊🩰┊𝐭𝐚𝐠𝐠𝐢𝐞𝐬:
🍑⌇(caption)⌇❝💐❝ 𓈈⌇🖇️⌇𖧧𖤣 taggies ⚛︎
🌷:: (ᴄᴀᴘᴛɪᴏɴs) ::🩰┊ɪʙ:┊ᴛᴀɢɢɪᴇs:
«🩰» •(𝐜𝐚𝐩𝐭𝐢𝐨𝐧𝐬)• «🍒» •𝐢𝐛:• «🌷» •𝐭𝐚𝐠𝐠𝐢𝐞𝐬:•
🩰 (𝙘𝙖𝙥𝙩𝙞𝙤𝙣𝙨)﹆ᨗ𑁍 ⸽ 𑁍⁝ 𝙄𝙗: ⸽ 𑁍⁝ 𝙩𝙖𝙜𝙨:
⸽🍒• (𝒄𝒂𝒑𝒕𝒊𝒐𝒏𝒔) • 🌷 ⸽ 💭 𝒊𝒃: ⸽ 🩰𝒕𝒂𝒈𝒔:
🌷 ❝ caption❝ 𓈈 s/o⌇🥐⌇𖧧𖤣 taggies 💭 #(user) 🩰#cgd  #fanpage 𓍯 ib: ??
⌗:: caption | 🎀 ⌞𝗏𝖼 : ⌝ ⊹˚˖⁺ | 𝗍𝖺𝗀𝗀𝗂𝖾𝗌 :
caption ࿔*:・// 𝐈𝐁:_ // ꒰/𝐎:_ // ꒰👒꒱:: 𝐃𝐓: // ꒰ 📋꒱:: 𝐓 𝐀 𝐆 𝐒 //
·˚ ༘ ┊͙ ◟̆◞̆ ┊ılı.ıllı.┊𝐈/𝐁:┊꩜┊ 𝐒/𝐨:┊ ᜊ┊𝐭𝐚𝐠𝐠𝐢𝐞𝐬
𖥻 ✿• ℘ caption   ⌞𝗌/
◜。 ࣪⊹ — ❝ yay !!⊹ ֺ ִ ꢆ 𓈒֢ ֺ est . 1991 ۪♡̶ 🥣 ࣪ ⭒ ׅ ׂ 𓈒 { ib - me ⬫ ࣪𓈒꒧◞🍏 ⤿ ִׄ ﹡ ֺ ۪
Free symbols:
૮ – ﻌ–ა
ฅ•ﻌ•ฅ
૮₍˶• . • ⑅₎ა
૮ • ﻌ - ა
૮₍˶ᵔ ᵕ ᵔ˶₎ა
૮₍´˶• ᴥ •˶`₎ა
૮₍ • ᴥ • ₎ა
૮ • ﻌ - ა
૮・ﻌ・ა
૮ • ᴥ • ა
૮ ’• ˕ •` ა
꒰ ꒱ ◡̈ ❅ ⋒ ☺︎︎ ☕︎ ☃︎@꒰ ა ♡ ໒ ꒱:𖣠
🔭𖨆♡︎𖨆
ᡕᠵ᠊ᡃ࡚ࠢ࠘ ⸝່ࠡࠣ᠊߯᠆ࠣ࠘ᡁࠣ࠘᠊᠊ࠢ࠘𐡏~♡
𓆩❤︎𓆪
(:̲̅:̲̅:̲̅[♡]:̲̅:̲̅:̲̅)
꒰ ა ♡ ໒ ꒱:༘♡ ♡⃛. ʚ♡⃛ɞ. ෆ. ෆ⃛
☺︎. യ. ꕤ. ˘͈ᵕ˘͈. ꒰ ꒱
˗ˏˋ ´ˎ˗. ♡̷. ♡̶. ˗ˏˋ ♡ ˎˊ˗꒰ ა ♡ ໒ ꒱:૮₍ ˃̵͈᷄ . ˂̵͈᷅ ₎აㅤ(๑•́ ᎔ ก̀๑)ㅤ૮ ˊ͈ . ˋ͈ ა
૮₍ ´𖦹 ˕ ×` ₎აㅤ૮₍ ˶• ˔ ต ₎აㅤ૮₍ ๑ • ᵜ ก ๑ ₎ა࣪
(˵ˊᯅˋ˵)ㅤ•᷄ࡇ•᷅@꒰ ა ♡ ໒ ꒱:૮₍。´• ˕ •`。₎აㅤ૮₍ ´ ꒳ `₎აㅤฅ՞•ﻌ•՞ฅ
૮₍´˶• . • ⑅ ₎აㅤ૮ ◞ ﻌ ◟ აㅤ૮₍´• ˕ •`₎ა
૮₍´˶ᵔェᵔ˶`₎აㅤ૮₍⇀‸↼‶₎აㅤ(⑉・̆⌓・̆⑉)꒰ ა ♡ ໒ ꒱:꒦ ͝ ꒷ ͝  ꒦ ͝
꒦꒷꒦꒷꒦
꒷ ꒥ ꒦
꒷˚₊⁀⁀꒷︶꒷꒥
꒷꒷︶︶꒷꒦
↷↶ ➳ ⃕  ꜛ ꜜ ⤹ → ⇵ ⇶ ↰
❀ ✿ 𖠇 𖧷
﹟ ⌗ ⨳ ⩩ ▦ ⋕
❏ ■ ﹅ ﹆ 𔓕 ⿻
≛ ، . ‹ ִֶָ . ָ࣪ ‹ ャ ִֶָ ︶꒷꒦︶ ꒦꒷꒷꒦ ︶꒷꒦꒷︶ ٬٬ ࣪ ،ぬ ⊹ ᨘ໑▸ 𖥻 ˑ ִ 𖦹 ִ ˑ 𖥔 ּ ִ 𖦹 ִ ˑ 𖥻 ╲ 𓍯 ࣪🦴 ᳝ ˑ 𐇛̲﹗ ˖ ་ 💭 𖦆 🧠 ぃ ˑ 🐩 ִ ⌨︎ ֺ ָ ֙⋆ 🩰 𖥻 ִ ۫ ּ ִ ۫ ˑ ֗ ִ ˑ ּ 𖥔 𓄼 ࣪⠀ ִ ۫ ּ ֗ ִ ۪ ⊹ ˑ ִ ֗ ִ ۫ ˑ ᳝ ࣪ 𓄹 ⊹ ᳝ ࣪⠀. ִ ་ ּ 𝟶:𝟶𝟶 ──◍───── 𝟷:𝟹𝟶 ➛ ̨𖥔 ִ ་ ، ˖ ࣪ ་ ˖ ʿ🥛ꜝꜞ ᳝ ࣪ 𔘓 ⎘ ་ ᳝ ◝ 𖥻⏱️ ぃ ˑ ִ ⌨︎ ֺ ָ ֙⋆ 🩰 𓄹 ࣪ ִֶָ 🧂 ࣪ ▸ ִֶָ 𖦹 ࣪˖ . ⊹ 𓄼 ࣪ ꞌꞋ ࣪𓂃 ִֶָ ≡ ⌂ ⌕ ♡゙
𝅄 ャ゙𒀭𖤩 ˖˚ 𖠿 ‣ ִֶָ ، 𖤘 𖠗 ֶָ 🧠 ʾʾ ۫ ♥︎.⭒ ۫ ׅ 🎀 𝅄 𓈈 𐑺ִ
6 notes · View notes
moleculardepot · 8 months
Text
Maltogenic Amylase from Bacillus sp
Maltogenic Amylase from Bacillus sp Catalog number: B2014265 Lot number: Batch Dependent Expiration Date: Batch dependent Amount: 1 g Molecular Weight or Concentration: N/A Supplied as: Solid Applications: molecular tool for various biochemical applications Storage: −20°C Keywords: Glucan 1,4-α-maltohydrolase, Maltogenic Amylase Grade: Biotechnology grade. All products are highly pure. All…
Tumblr media
View On WordPress
0 notes
tomoevo4wo4 · 10 months
Text
【新台】コナミ「L麻雀格闘倶楽部覚醒」スペック情報判明!STタイプ×確変タイプのWループシステム搭載!誰でも打てる押し順の純増8枚AT
299:パチンコパチスロドットコムがお届け:2023/07/01(土) 00:28:37.59L麻雀格闘倶楽部 覚醒純増8枚か ■L麻雀格闘倶楽部 覚醒 (コナミ) スマスロ AT機 コンプリート機能搭載 ・格闘倶楽部RUSH【AT】純増 約8.0枚 ※押し順レア役等で上乗せ&SP対局のチャンス対局勝利でRUSH継続通常対局 ST16G+αSP対局 ST10G+α CZ・特化ゾーン① 霊獣アタック② 和了乱舞③…
View On WordPress
0 notes
sakumakou · 11 months
Text
20230413
0413 きままなTV・メディア情報です(不定期刊)
  「TV各局、Jアラート発出で番組変更…NHK朝ドラ『らんまん』休止」(報知)
https://hochi.news/articles/20230413-OHT1T51014.html?page=1
 「特設サイト『よくわかるテレビの広告効果』の公開について」(民放連)
https://j-ba.or.jp/category/topics/jba105985
 「MBS『皇室アルバム』第6代ナレーターに上田悦子アナ 1月死去高井美紀さん後任」(報知)
https://hochi.news/articles/20230412-OHT1T51201.html?page=1
 「TBSがコア視聴率2位で局員にご祝儀 ケチ批判覆す『500円食事券』投入」(東スポ)
https://www.tokyo-sports.co.jp/articles/-/260063
 「米公共ラジオ、Twitter使用を停止 有力報道機関で初」(日経)
https://www.nikkei.com/article/DGXZQOGN12DOG0S3A410C2000000/
 「米ワーナー、動画配信『Max』始動 ハリポタを改作」(日経)
https://www.nikkei.com/article/DGXZQOGN12EBL0S3A410C2000000/
 「産経新聞が2審も敗訴 森友問題の寄稿で立憲2議員の名誉毀損認める」(毎日)
https://mainichi.jp/articles/20230412/k00/00m/040/221000c
 「CX『News α』美貌���アップ話題の堤礼実アナ 膝上ワンピ&美脚『キタ』『綺麗』」(デイリー)
https://www.daily.co.jp/gossip/2023/04/13/0016239430.shtml
 「100億円大台突破なるか『劇場版 名探偵コナン 黒鉄の魚影』の〝勝算〟」(産経)
https://www.sankei.com/article/20230413-Z4ATYU6LCJKD3M7NH2A7KSPL5U/
 「木村拓哉『-教場0-』高視聴率で好発進、『しゃべくり』SPにも勝ったCX“2重囲い込み”」(週刊女性)
https://www.jprime.jp/articles/-/27528
 「ジャニー喜多川氏の性加害を証言 元Jr.の会見でNHKが質問 視聴者の関心は今後の報道」(ゲンダイ)
https://www.nikkan-gendai.com/articles/view/geino/321483
 「春ドラ異色作『日本統一 関東編』反社追放の時代になぜヤクザがドラマになるのか」(新潮)
https://www.dailyshincho.jp/article/2023/04130600/?all=1
 「Jリーグ26年までに秋春制移行へ ほぼ全クラブが容認、環境まとまれば前倒しも」(SPONICHI)
https://www.sponichi.co.jp/soccer/news/2023/04/13/kiji/20230413s00002014095000c.html
0 notes
thyele · 1 year
Text
2023年3月6日
魚住 英里奈(official)さん「4月公演🥷 2023/4/9(煮血耀美)*ネオ東狂・池袋手刀ドーム ◆MAMADE of SUGAO 2023 -part 1- ◆出演 魚住 英里奈(*美ネオ) Palastleben 中学生棺桶 MUNIMUNI ※なんらかのガクトあり(やらないかも) ◎↓前売パー券予約制;*3/7 23:23~受付開始↓ https://t.co/3mpPCy69Fq https://t.co/DAmA5QsHVY」https://twitter.com/uozumi_chas/status/1632197210313195521
黒柳 能生〈公式〉さん「待ってます。#待ち猫 https://t.co/7VKEuQh5qh」https://twitter.com/kuroyanagi440/status/1632036095113457664
mitsuru matsuokaさん「LIVE終わり楽屋から疲れ切った生放送やりますので… 3/5日(日)19:30~生放送予定 松岡充ニコニコチャンネル「Matsuotterの裏世のヲタ」 第143回 Matsuotterの裏世のヲタ生放送 〜MTV Unplugged 出演記念・楽屋生放送 SP〜 https://t.co/FFZuNFMgck」https://twitter.com/mitsurumatsuoka/status/1632197615331966977
UNCLOCK LOVER 頼田陵介さん「おはようございます🙋‍♀️ 今日は少し寒いですな😅 体調崩さぬようお気をつけて😊 本日も頑張ってこー✌️ 皆さま良き一日を✨ https://t.co/h9XGq6mDU1」https://twitter.com/yorita_ryosuke/status/1632201379816308736
LUNA SEAさん「【SLAVE先行受付中!】 2023.5/27(土),28(日)開催 THE BEST OF LUNA SEA 2023 武蔵野の森総合スポーツプラザメインアリーナ 指定席・ファミリーシートの先行予約は 3/8(水)18時締切となります。 これからご入会される方もお申込み可能です。 ぜひお見逃しなく!! 詳細はこちら https://t.co/Va4MVCGWp6 https://t.co/VLNIG8ynBj」https://twitter.com/LUNASEAOFFICIAL/status/1632214353578713088
BUCK-TICK OFFICIALさん「📻3月18日(土)21:00~放送の FM COCOLO「THE MAJESTIC SATURDAY NIGHT」に、 今井寿・星野英彦がゲスト出演いたします❗️ ぜひ、チェックしてください🖐️😄 番組詳細は ▶️https://t.co/W1aPtFqWy4 #今井寿 #星野英彦 #fmcocolo765 #BUCKTICK #BUCKTICK35th」https://twitter.com/BUCKTICK_INFO/status/1632214357508513795
KINGRYOさん「おはようございます✨ 2023.3.5(日)am10:37 さぁ今日も楽しんでいきましょう🦁 皆様素敵な日曜日を👍 https://t.co/ORRfrbBwZm」https://twitter.com/kingryoworld/status/1632193494201831431
BUCK-TICK OFFICIALさん「📢本日(3/5)20:00〜 YouTube[BUCK-TICK公式チャンネル]にて、 『BUCK-TICK SUNDAY LIVE STREAMING』 ✨<DAY5>配信✨ どのライブ映像が配信されるかは、お楽しみに✌️ なお、アーカイブ配信はございません。お見逃しなく‼️ 視聴はコチラ⬇️ https://t.co/1y5AN84ytk #BUCKTICK #BUCKTICK35th」https://twitter.com/BUCKTICK_INFO/status/1632214599436062721
BUCK-TICK OFFICIALさん「📢全国ツアー「BUCK-TICK TOUR 2023 異空-IZORA-」 BUCK-TICKオフィシャルチケット先行予約(抽選)締切間近❗️ 受付期間は、本日(3/5)23:59迄です。 ※本受付は電子チケット・紙チケットの選択が可能です。 ぜひ、ご利用ください!🖐️😄 🔽お申込みは https://t.co/eWK15SA6T7 #BUCKTICK #BUCKTICK35th」https://twitter.com/BUCKTICK_INFO/status/1632214599448809472
aieさん「「暗黒物産展」第二部開門・・・。 https://t.co/GMKiwfu5y6 圧倒的存在感(パワーワード)・・・。 https://t.co/pFaXz2vvHz」https://twitter.com/THEGOD_aie/status/1632218930466148352
KING OFFICIALさん「【KING WEB SHOP】 ■チェキ 公演当日21:00まで https://t.co/O4cjT66UHp ※受付期間後は、フォームが開いてる間は、ご注文承ります。 お忘れの方は、ご注文いただいて大丈夫です。 ■KING NEW ALBUM 〝CRY OUT TO HEAVEN〟 https://t.co/epgpeQqgtO ■通常通販 https://t.co/ERDSYYIonH https://t.co/WTt2aVYAeI」https://twitter.com/KINGOFFICIAL114/status/1632221187479838723
SUGIZOさん「浮現祭 EMERGE FEST 2023 @ 台湾🇹🇼 真的很感謝大家! Photo by Keiko TANABE. #SUGIZO #MaZDA #よしうらけんじ #komaki #COSMIC_DANCE_QUINTET #CDQ #浮現祭2023 #EMERGE_FEST_2023 https://t.co/RmjL2HoN1g」https://twitter.com/SUGIZOofficial/status/1632230449555869698
中島卓偉STAFFさん「【本日】コメントゲスト出演! 3/5(日)20:00-20:30 ON AIR #KBS京都『#M10+』 @kbskyoto_web コメントゲスト: #中島卓偉 放送局HP https://t.co/VwKFshpi93 インターネットラジオ radiko https://t.co/7cdkQ8nTS0 ※エリア外の方はradikoプレミアムをご利用ください #卓偉 @takuinakajima」https://twitter.com/helter_takui_st/status/1632221897730695168
夜-yoru- officialさん「※NEW!!! 2023.3.5(日) EDGE Ikebukuro 「見世物小屋は終わらない」 開場/開演 16:30 / 17:00 ticket 前売 /当日 ¥4,500/¥5,000 https://t.co/C9nCwiSyLn」https://twitter.com/YoruWato0097/status/1621495246193577986
【Phobia】 KISUIさん「これはっ!懐かしい!! 絶対聴きたいやつだ!!」https://twitter.com/KISUIxxx/status/1632241864148668416
首振りDollsさん「3/11までご購入&アーカイブ視聴できますので是非🔥 M2.地獄に堕ちた野郎ども 3/4(土)新宿ANTIKNOCK配信映像より https://t.co/Bt7IY4GcXR」https://twitter.com/KubihuriDolls/status/1632242054922379264
Nimo_ANONYMOUSさん「【Nimo個人BDグッズinformation】 「Nimo Birthday Event〜にもーにんと愉快な仲間たち〜」 2023/03/13(月) 赤羽ReNY α にて発売。 にもーにんタンクトップ…¥5,500yen ※販売場所ANONYMOUS物販コーナー 注)タンクトップは撮影券の対象外となります https://t.co/Z6FGvixshG」https://twitter.com/Nimo_ANONYMOUS/status/1632210050700779521
UNCLOCK LOVER 頼田陵介さん「明日のEDGEは配信なしですが、前回の仙台でのアーカイブは3月12日23:59まで見れます🙋‍♀️」https://twitter.com/yorita_ryosuke/status/1632244199230951424
小美玉たかしさん「【超大物故郷凱旋ビッグショー】 ★3月25日(土)水戸club SONIC 『北関東V SUMMIT』 ~Invitaition to darkness in MITO~ 開場16:00/開演16:30 前売¥3,000/当日¥3,500(D代別) <出演> ●ヴィジュアル系演歌歌手 小美玉たかし ●絶リン★ハグキ ●枯レタ井戸ノ底。 ●OMEGA ●Dhoby Ghaut ●DEAD ORDER https://t.co/sggmVaw1xj」https://twitter.com/TAKASHI_OMITAMA/status/1632245265943101442
小美玉たかしさん「■チケット https://t.co/7oBVbxkrZK 改名後初の故郷凱旋ビッグショーです† 是非ぜひ皆さんお集まり下さい† https://t.co/21GHi55Txi」https://twitter.com/TAKASHI_OMITAMA/status/1632246272181833728
UNCLOCK LOVER 頼田陵介さん「@michiru_loopash @mask20160501 誕生日おめでとうございます😆😆😆🎉🎉🎉✨」https://twitter.com/yorita_ryosuke/status/1632252209646936064
nao 首振りDollsさん「そしてジョニーDJ。」https://twitter.com/kubihuri_nao/status/1632261706373279744
恐さん「幼少期の頃 これが恐くて怖くて https://t.co/UflLIYa8lr」https://twitter.com/bpmkyou/status/1632272236169269252
Ryuichi Kawamura officialさん「春はロゼの季節😌🫶🏻 https://t.co/St29YofjIc」https://twitter.com/RyuichiKawamur2/status/1632277107878555648
nao 首振りDollsさん「明日チャンス。ぜひ。」https://twitter.com/kubihuri_nao/status/1632278416300068864
YARIMAN HUNTERさん「今まで上映会場のみの限定販売だった、YARIMAN HUNTER×首振りDolls naoのコラボTシャツですが、明日3/6(月)、nao君がソロ出演するライブの物販にて急遽販売させてもらうことになりました!! #yarimanhunter #首振りDolls https://t.co/fnCSlwz0Kc」https://twitter.com/yokosukaeiga/status/1632276648090533888
SUGIZOさん「新たな重要な動きが始まっています!」https://twitter.com/SUGIZOofficial/status/1632280029848829952
SUGIZOさん「大切な行動を共に宜しくお願い致します!」https://twitter.com/SUGIZOofficial/status/1632280622118080512
seekさん「暗黒物産展23'おわり。 cali≠gari deadman Psycho le Cemu による異色のイベント。 初めてで探り探りな部分もありましたが、、ご来場ありがとうございましたー。 この3バンドでちゃんとライブやりたい! https://t.co/CZSFanigTf」https://twitter.com/seek_bonshisya/status/1632280691420598273
金髪豚野郎K助(偽殿下)さん「グリム20周年ワンマンショー Evil Theater of 「Grim」 ~血霧のSILENT FOREST~ 2023年4月22日(土) 大阪club MERCURY 開場 18:30 開演 19:00 前売 ¥3000 当日 ¥3500 チケット 金髪豚野郎サイト https://t.co/GiywvuzJst グリムオフィシャル [email protected] https://t.co/cZgRTwGWlu」https://twitter.com/goldenpigdrumer/status/1632288672484827136
金髪豚野郎K助(偽殿下)さん「なんと!こちら魔界から宣教師Sを召喚することとなりました! 20周年に相応しいイベントになりそうです (°_°) https://t.co/GF25AFlH7B」https://twitter.com/goldenpigdrumer/status/1632290602544164866
leaya(бвб)さん「今日も覇叉羅弾いてきたぞ とりあえずの分はやった この旅はまだまだつづく… https://t.co/wdXqd3Gm6T」https://twitter.com/leaya_bass/status/1632275004661583874
舜3/25 NEiN京都さん「ひとまずお疲れ様でした! ドラムに入ってたお兄ちゃんの声は消しました(*´﹃ `*)」https://twitter.com/shun_thefuzzbox/status/1632296120977346560
金髪豚野郎K助(偽殿下)さん「@shun_thefuzzbox えー!(°_°) なんて言ってたか知らんけど」https://twitter.com/goldenpigdrumer/status/1632298457515053056
aieさん「サンキュー暗黒物産展、また倉庫が溢れたら・・・。 https://t.co/GxisZfgOfw」https://twitter.com/THEGOD_aie/status/1632300715854172160
SUGIZOさん「[MEDIA] #SUGIZO が出演した、台湾の音楽フェス「浮現祭2023 Emerge Fest.」の記事が掲載されました。 是非、ご覧ください‼︎ 台灣的音樂祭「浮現祭2023 Emerge Fest.」的相關報導公開了。 請一定要看唷! ✸ 時光新聞TIME NEWS https://t.co/PeTfSMiUUI ✸ 三立新聞 https://t.co/0v60rDwEl0」https://twitter.com/SUGIZOofficial/status/1632301422212685826
SUGIZOさん「✸ Yahoo雅虎新聞 https://t.co/PSb6Wt3HYu ✸ LINE Today https://t.co/ZF92YVLSK4 ✸ 壹蘋新聞 https://t.co/uwOiN1WPIo ✸ Hinet新聞 https://t.co/ocsyZxl5KD ✸ Yam蕃新聞 https://t.co/jZBvEZTEae」https://twitter.com/SUGIZOofficial/status/1632301522322325505
SUGIZOさん「✸ 奧丁丁新聞 https://t.co/IZW93bnnmH ✸ 台北郵報 https://t.co/zs5nPCVNsj ✸ 新��條 https://t.co/vHhR58woUf ✸ LTVNews https://t.co/Pz92gfEIT7 ✸ Gothe https://t.co/JFfJk6kbbc」https://twitter.com/SUGIZOofficial/status/1632301637506301953
SUGIZOさん「✸ 旅食樂 https://t.co/hS7qjc4roz ✸ 一指通 https://t.co/WCGej6qG7L ✸ 樂新聞 https://t.co/N0cYIZ4HCp ✸ 睿傳媒 https://t.co/mqg0L6eTLg」https://twitter.com/SUGIZOofficial/status/1632301998879162368
SUGIZOさん「✸ 酷吧!CoolBarLife生活誌 https://t.co/kqLfj1QvZx ✸ 屏東時報 https://t.co/sTu80MhNPU ✸ 引新聞 https://t.co/1o1yRsGgur ✸ 臺中市政府 https://t.co/Beo9ucDuO2」https://twitter.com/SUGIZOofficial/status/1632302061823102977
…。【サイレンス】さん「次回の…。【サイレンス】※19:00〜出演⏰ 3/10(金)池袋手刀 kehre. presents「Sea, swallow me」 ■出演(BIG 3); kehre. 101A …。【サイレンス】 ■open 18:30 / start 19:00  ■前売 3,500円(ドリンク別)当日4,000円(ドリンク別) 御予約受付中↓ https://t.co/Cizo1Eaary https://t.co/6OQmjExbgM」https://twitter.com/silence_3_dot_o/status/1632249106109440001
nao 首振りDollsさん「アンチノックの配信はスマホのスピーカーでも良い感じに聴けるから素敵。 そして私の要望通りハンディメインの構成にしてくれてて躍動感凄い。 ライブって上も下も右も左もぐちゃぐちゃになるやん。 それが伝わるのが大事。 まぁ現場とはちがう楽しみ方があるなと思うようになりました。」https://twitter.com/kubihuri_nao/status/1632312830476304385
ryoさん「本日とある撮影と対談をしてきたのだった 懐かしくて楽しかった🥴」https://twitter.com/ryo_dalli/status/1632314222028951552
金髪豚野郎K助(偽殿下)さん「@shun_thefuzzbox @leaya_bass え? 可愛い 好き #自分大好き」https://twitter.com/goldenpigdrumer/status/1632319830937460737
leaya(бвб)さん「@goldenpigdrumer @shun_thefuzzbox マジ心霊現象かと思ったわ(º_º)」https://twitter.com/leaya_bass/status/1632298687173885954
舜3/25 NEiN京都さん「@leaya_bass @goldenpigdrumer だーだーだっ!みたいな感じでギター歌ってた(*´﹃ `*) ギターだけになるとこの尺を歌ってはかってたんだろうな笑」https://twitter.com/shun_thefuzzbox/status/1632305904401129472
Ryuichi Kawamura officialさん「春のワイン会^ ^ ブログ更新しました! https://t.co/nio7ehxCci」https://twitter.com/RyuichiKawamur2/status/1632323102914019329
Ivy darknessさん「池袋お疲れ様でした」https://twitter.com/IVY_DOPE_SHOW/status/1632328917683171328
XA-VATさん「【通販決定!】 XA-VAT「SLEE_」3/1.2 新宿ロフト公演にて販売した グッズ及びCDの 通販が決定致しました! 販売開始時間→本日3/5 20:00〜 販売URL→3/5 20:00に本アカウントにてツイート致します。 ※数に限りがある商品もございます、先着順での販売となりますので予めご了承下さい。 #ザバット https://t.co/X9xfvudpdw」https://twitter.com/XAVAT_official/status/1632206085712121856
【Phobia】 KISUIさん「今日はお誘い頂いてたんだけど、夜時間無かったから、リハーサルだけ拝見しました。 かっこよかった! てか、皆んな当時と変わって無くて驚いた。 ビジュアル系ってみんな歳とらないな。 https://t.co/oJwFjZuSIY」https://twitter.com/KISUIxxx/status/1632332223281238017
0 notes
chaukachawan · 1 year
Text
役者紹介
どうもこんにちは。サブウェイ狂信者になりつつあるAru=Rです。吹田勢なら、阪大病院内の店舗に、そうじゃない人も梅田の店舗にGo!!野菜多めでと言うのを忘れずに。満足感の高いサンドウィッチが500円程度で食べれます。
って事で同じ脚本の方+αと妄想の中で絡んでみたいと思います。
敬称略です。
そしてこの妄想はほぼフィクションで、実際の本人の行動と一致しないことが恐らく多々あります。あと、失礼な発言が混じっていた場合、早口言葉で私をいじめる権利をお渡しします。許して…
夕暮児
箕面の山に登りながら植物を色々見る。そして夕暮児が20歳になったのでスダジイをおつまみにして一緒にビールを飲む…いや、やっぱナッツでいいなこれ
ふぉにゃ
アイワナとかしょぼんのアクションをやらせたら、5分毎に何これって言われ続け、20パターンくらいは確認できた。
たぴおか太郎
タピオカ飲みに行ったら店で出てきたのがナタデココだったので仕切り直しが発生した。なんでや!ナタデココもタピオカはちゃんと美味しく頂きました。
大門宙羽
なんだかんだでカフェに行くことになり、どこ行く?ってカフェのリスト送ったら純喫茶選んできた。やっぱ良いよな!
緒田舞里
スマブラSPで戦ったら普通に負けたのでスマブラXで勝負を挑んだら勝った。当然マリオとカービィで戦った。勝敗関係なく楽しかったのでよし!
水琴冬雪
午前2時に踏切前で集合して天体観測をした。平和だ。星に関して僕は無識なので色々教えてもらえて楽しかった。しかし、眠すぎてヤバzzz
三一三
なぜか決闘になり、こちらの武器がサバイバルナイフしか無かったため苦戦したが、攻撃が一撃が重いが遅いものだったので、ほぼ全て避けて勝った。勝負後の握手の力はやはり強かった。
アリリ=オルタネイト
心強い仲間として他の人を巻き込みながら害虫退治のために奮闘した。虫を駆除するの、容赦ないなと思った。
ちなみに書こうと思ったら劇のネタバレになりかけたのでこれは書き換えられています。
佐々木モモ
ボス戦中、僕がボスに近接攻撃を当て続け、そろそろボスが倒せそうなところで、遠距離攻撃でボスを倒して討伐報酬をほぼ全てかっさらった。お陰様で僕の穢れがちょっと溜まった。
ベジータベジ子
お互いの会話のカードが噛み合わなさすぎて会話が続かないかと思いきや、一生過去公演の布教をされ、面食らった。助け舟は?とりあえず銀河ってギャラクシーは観ようと思った。
坪井涼
ゴコのシールドを全て割り、ダイレクトアタックしようと思ったらエグゾディア揃ったと言われてこちらが爆発四散する。悔しいです…
荻野琥珀
ツタンカーメンもうええわのリメイクを作ったし、MV付けたいなと思って依頼したら100万って言われて顔が無くなった。その後2000円で良いよって言われたので依頼した。てか2000円って高いのか?安いのか?教えて偉い人。
ζ
同じペースでウィスキーを飲んだら、僕が知識をつけながら色んなウィスキーをガブガブ飲んだため、潰れかけて、僕が介抱された。僕も強いはずだが…ま、記憶は残ってるのでセーフ!(アウトだよ!)
トロン
イケメンすぎて全てこちらが負けるが、イケメン力のおかげで許され、仲良くラーメンを食いに行く。普段食べないコッテリのラーメンを食べたけど、美味かった。
えどいん
ゲーセンいって、ギタドラのセッションやろうぜ!って言いながらギターフリークスやらせたら天体観測を3通り(guitar,bass,classicのguitar)選ばれてこちらは3回天体観測のドラムを叩くことになった。最後のclassicをやる辺りでやっと楽しそうな顔をしてくれた。まぁ互いに楽しめたのでよし!
中津川つくも
これホバが作ったの?って言いながら純粋に僕のネット上に公開中の曲のうち、一番前に作った曲を誉めてきたが、歌詞とか色々気にしてる曲なので僕の恥ずかしさが限界突破してしまった。私のお気に入りのやつ聴いて…()
かけうどん
これまで僕が全然大道具作業に行けなかった分、ビス打ちとか色々教えてもらって、僕が大道具人間に一歩近づいた。作業、行くぞー(そこに授業が立ちはだかる!)
オペの方!
梅本潤/音響
京都に行ったついでに家に上がったところ、30分後くらいにぶぶ漬けを出してきたので何のジョークだよって思いながらとっとと食べて退散したけど、嘲笑うのとは違う楽しそうな顔してた
荷電レプトン/映像
リプトンっぽい名前してるから紅茶好きなのかと思ったらコーヒー普通に飲みながら化学のトークをされ、最初と結論だけ理解して、僕がへー✖️3くらいした
杏仁アニー/照明
全てが強すぎてまた負けるが、優しさにより全てを許されて、何人か巻き込んでカフェに行く。巻き込める人が多かったのでカフェ選びに超悩んだ
スペシャルサンクス(書きたい先輩!)
友情出演
DTMなどを教えてもらうが、ブッ飛んだ会話ばかりされるため、超楽しいが進まない(また教えてほしいです!!!)
藤丸翔
僕がツッコミで漫才をしたら、いつもツッコミをしているイメージとのギャップで僕が笑いすぎて漫才にならなかった
宙稚勇貴
美味しいおつまみと一緒に日本酒を飲むって合宿初日夜みたいなことをまたしたところ、色んな人が乱入してきてワイワイガヤした飲み会になった。これはこれで、良!!!
という感じでした。雑に小ネタを挟みまくったから、良くわかりませんね?って事で観に来て本当のところどうなのか確かめましょう!
何人か不仲なんか?って思わせるようなことを書いた気がしますが、仲が良いからこそだと思って書いてるので不仲ではありません。大丈夫だよ(誰宛だこの文)
てか32期の先輩方が引退ってマジ???マジメを壊したい時期なのでこんな怪文書ですいませんね…とりあえず、またAmong Usでもやりませんか??
1 note · View note
wakuwakusan · 2 years
Text
ソニーグループの営業利益がなんと初の1兆円に?!
皆さんこんにちは!
わくわくさんです✨
私はテレビやカメラスマホはソニーで揃えるほどソニーが大好きなのですが、
なんとそのソニーが、営業利益1兆円を越えたというニュースを見て驚きましました👀
Tumblr media
画像元https://www.jiji.com/sp/article?k=2022051000842&g=eco&p=20220510ds52&rel=pv
昔からウォークマンやブラビア、αなど世界をリードするデジタル機器を開発販売してリードしてきたが長らく低迷期が続いており、
今回映画と音楽事業が好調でこのような結果になったようです✨
昨年発売したPS5は半導体不足による生産台数減で伸び悩んでいたがソニーグループとして他事業でリカバリーし、日本ではトヨタに続いて2番目に達成しました🎊🎉
世界をリードし続けるソニーのさらなる飛躍が楽しみですね👀✨
今日はこの辺にしたいと思います🎉
いつもご覧頂きありがとうございます✨
それではまた〜👐
参考
https://www.jiji.com/jc/article?k=2022051000842&g=eco
0 notes
ofspvrta · 7 months
Text
Tumblr media
A good myth is hard to kill.
indie | private | selective | mutuals only kassandra of sparta from assassin’s creed series.  18+ only. penned by ikaros.
30 notes · View notes
notthedyingtype · 2 years
Photo
Tumblr media
                “All of the other little things that make me up… the microbes &&. bacterium &&. the billion other little things that live on my eyelashes &&. in my hair &&. in my mouth &&. on my skin &&. in my gut &&. everywhere else, they just keep on living. &&. eating. &&. I’m serving a purpose. I’m feeding life. &&. I’m broken apart, &&. all the littlest pieces of me are just recycled, &&. I’m billions of other places. &&. my atoms are in plants &&. bugs &&. animals, &&. I am like the stars that are in the sky: There one moment, &&. then just scattered across the GODDAMN COSMOS.”           -Riley Flynn, Midnight mass 1 x 04: Book 4: Lamentations
                                Muses || Rules || Interest Tracker                                                       x || x
28 notes · View notes
intuitkiller · 3 years
Text
sorry. will’s been a little on the SUPER quiet side lately so i’ve been over on @notthedyingtype when i have time to spare
2 notes · View notes
noblemagicks · 5 years
Text
tag drop!
1 note · View note
droiddoll · 5 years
Text
Tumblr media
tag drop!
0 notes
Text
World Journal of Agriculture and Soil Science (WJASS)
New Trends of the Polysaccharides as a Drug
Authored by Ebtsam M El Kady
Tumblr media
Introduction
Polysaccharides (PSs) are a high molecular weight polymer, consisting of at least ten monosaccharides mutually joined by glyosidic linkages. The glycosyl moiety of hemiacetal or hemiketal, together with the OH group of another sugar unit, formed the glyosidic linkages [1]. Unlike protein and nucleic acid, the structure of PSs is far more complicated based on the differences in (i) composition of monosaccharide residues, (ii) glyosidic linkages, (iii) sequence of sugar units, (iv) degrees of polymerization, and (v) branching point. Apart from those, other factors, such as differences of cultivars, origins, and batches, or even extraction methods and fraction procedures are evidenced to have significant influence on the physicochemical and structural properties of PSs. Owing to the rapid development of modern analytical techniques; the identification of PSs structures is becoming more and more feasible and convenient [1]. In recent years, researches have confirmed that PSs from natural products possess wide-ranging beneficial therapeutic effects and health-promoting properties. Specifically, seaweed derived PSs, such as alginate, fucoidan, carrageenan, laminaran, and agar [2], are widely distributed in biomedical and biological applications [3-7], for example, tissue engineering, drug delivery, wound healing, and biosensor due to their biocompatibility and availability.
Fungal PSs, derived from Grifola frondosa, Lentinula edodes, oyster mushroom, as well as Ganoderma, Flammulina, Cordyceps, Coriolus, and Pleurotus, and so forth, are demonstrated to have multiple bioactivities [8-11], including immunomodulating, anticancer, antimicrobial, hypocholesterolemic, and hypoglycemic effects. Bacterial extracellular PSs, loosely associated with bacterium, capsular PSs, tightly bound to bacteria surface, and lipopolysaccharides, always anchored to cell surface by lipid, are nontoxic natural biopolymers and provide extensive applications in areas such as pharmacology, nutraceutical, functional food, cosmeceutical, herbicides, and insecticides [12].
If PSs contains only one kind of monosaccharide molecule, it is known as a homopolysaccharide, or homoglycan, whereas those containing more than one kind of monosaccharide are heteropolysaccharides. The most common constituent of PSs is glucose, but fructose, galactose, galactose, mannose, arabinose, and xylose are also frequent [13,14]. PSs are structurally diverse classes of macromolecules able to offer the highest capacity for carrying biological information due to a high potential for structural variability [15]. Whereas the nucleotides and amino acids in nucleic acids and proteins effectively, interconnect in only one way, the monosaccharide units in PSs can interconnect at several points to form a wide variety of branched or linear structures [16]. This high potential for structural variability in PSs gives the necessary flexibility to the precise regulatory mechanisms of various cell-cell interactions in higher organisms. The PSs of mushrooms occurs mostly as glucans. Some of which are linked by β-(1---3), (1---6) glycosidic bonds and α-(1---3)-glycosidic bonds but many are true heteroglycans. Most often there is a main chain, which is either β-(1---3), β-(1---4) or mixed β-(1---3), β-(1---4) with β-(1---6) side chains. Hetero-β-D-glucans, which are linear polymers of glucose with other D-monosaccharides, can have anticancer activity but α-D-glucans from mushroom usually lack anticancer activity [15]. Heteroglucan side chains contain glucuronic acid, galactose, mannose, arabinose or xylose as a main component or in different combinations
The number of potential PSs structures is almost limitless but in practice many such polymers are unlikely to possess useful physical properties. Even now it is difficult to relate the chemical structure elucidated for any specific PSs to its physical functionality [17]. Currently only a small number of biopolymers are produced commercially on a large scale. However, this limited group of products exhibits an extensive range of physical properties and also provides several models for study by microbiologists, carbohydrate and physical chemists and molecular biologists.
PSs widely exist in the animals, plants, algae and microorganism. Together with proteins and polynucleotides, they are essential biomacromolecules in the life activities and play important roles in cell–cell communication, cell adhesion, and molecular recognition in the immune system [18]. In recent years, some bioactive PSs isolated from natural sources have attracted much attention in the field of biochemistry and pharmacology. They exhibit various biological activities affected by different chemical structures. Suarez et al. [19] reported that the immunostimulatory activity of arabinogalactans extracted from Chlorella pyrenoidosa cells depended on their molecular weights. The higher molecular weight arabinogalactans exhibited immunostimulatory activity, but the lower molecular weight fractions did not. Further researches show that the activities of PSs are not only dependent on their chemical structures, but also are related to their chain conformations [20]. It is known that the anti-tumor activities may be related to the triple helical conformation of the β-D-(1---3)-glucan backbone chain for some PSs, such as lentinan from Lentinus edodes [19,21] and schphylizophyllan from Schizophyllum commune [22,23]. In view of the fact that, Sakurai and Shinkai [24] were the first to find that schizophyllan may form a helical complex with single stranded homopolynucleotides, many works about preparing a complex of schizophyllan and DNA or RNA for a nontoxic gene delivery system have been developed [25-32]. Generally, it is interesting and important to elucidate the relation among chemical structures, chain conformations of PSs and their biological activities. However, PSs are usually composed of various monosaccharides linked with different glucoside bonds. Some PSs has hyperbranched structures. Moreover, PSs often has high molecular weights, and tends to form aggregates in solution that can mask the behavior of individual macromolecules. In consequence, to characterize the chemical structures and chain conformations of PSs is not an easy task.
The chemical structures were analyzed by FTIR, NMR, GC, GC– Mass and HPLC. The chain conformations of PSs in solutions were investigated using static and dynamic light scattering.
PSs already proved to have several important properties [33- 43]. However, the attempts to establish a relationship between the structures of the PS and their bioactivities/actions have been a challenge due to the complexity of this type of polymers. In fact, aside from the homogalactan from Gyrodinium impudicum [44], the β-glucan from Chlorella vulgaris [45] and the PSs from a few species of algae, most of these carbohydrates are highly branched hetero polymers with different substituents in the various carbons of their backbone and side sugar components. Additionally, the monosaccharide composition and distribution within the molecule, and the glyosidic bonds between monosaccharides can be very heterogeneous, which is a real impairment for the study of their structures. Moreover, this heterogeneity also depends on the species, between strains of the same species, and on the time and place of harvest. Nevertheless, there are always some similarities between the PSs from each group of seaweeds: often, fucoidans are extracted from brown algal species, agaroids and carrageenans come from red algae, and ulvans are obtained from green algae. Regarding cyanobacteria and as far as we know, there are not common names for their PSs, to the exception of spirulan from Arthrospira platensis. There are species that, besides producing large amounts of these useful polymers, they secrete them out into the culture medium and these polymers are easily extracted [38]. Both algae are cyanobacteria excellent sources of PSs, most of them being sulfated (S-PSs). They are associated with several biological activities and potential health benefits, making them interesting compounds for the application in pharmaceuticals, therapeutics, and regenerative medicine. Some of the beneficial bioactivities demonstrated by the crude PSs and their derivatives, either in-vitro or in-viv, upon various kinds of cell-lines and animal models, include anticoagulant and/or antithrombotic properties, immunomodulatory ability, anti-tumor and cancer preventive activity. They are also good antidislipidaemic and hypoglycaemic agents, and can be powerful antioxidants, antibiotics and antiinflammatory. The S-PSs from Enteromorpha and Porphyridium have demonstrated strong antitumor and immunomodulating properties [46-48] those from Caulerpa cupressoides and Dyctiota menstrualis are good antinociceptive agents [49,50], and the S-PSs from Cladosiphon okaramanus showed angiogenic, gastro- and cardioprotective bioactivities [33,51,52].
Some Structural Characteristics of Polysaccharides from Algae
 The chemical structure of PSs from algae may significantly determine their properties, namely physico-chemical and biochemical, and reflect their physical behavior and biological activities.
Macroalgae
Macroalgae who’s PSs have been studied more often; belong to the group’s brown algae (Phaeophyceae) green algae (Chlorophyta) and red macroalgae (Rhodophyta). Brown algae usually contain fucoidans; the oligosaccharides obtained from the hydrolysis of fucoidans may often contain galactose, glucose, uronic acids, and/or other monosaccharides, linked together and to the main chain by different types of glycosidic bonds. This is the case, for example, for the laminaran from E. bicyclis, or the galactofucan from Sargassum sp., and the fucan from P. tetrastromatica. However, the structure complexity of these fucoidans makes difficult to establish a relationship between the PS-chains/composition and their biological actions, and/or some kind of protocols to design universal pharmaceuticals or other drug-like substances to prevent and/ or cure specific diseases [53]. The monosaccharide composition, the linkage types, the overall structure of fucoidans, and some of their di- and oligosaccharides were well explored by Li et al. [54], Ale et al. [55] and Fedorov et al. [35]. Ale et al. [55] showed the difference between S-PSs from three species of Fucus by focusing on the various substituents at C-2 and C-4 carbons, despite the similarities of their backbones; they also highlighted the possible structures of fucoidans from two species of Sargassum [56,57]. Among them are the schemes for the components of the main chain showing either the (1---3)-, and (1---3)- and (1---4)-linked fucose residues or some di- and trisaccharide repeating units for A. nodosum, C. okamuranus, L. saccharina and some species of Fucus. On the other hand, Fedorov et al. [35] focused on the structures and bioactivities of different S-PSs, such as galactofucan from Laminaria and laminarans from E. bicyclis. Red algae contain large amounts of S-PSs, mostly agaroids and carrageenans, with alternating repeating units of α-(1---3)-galactose and β-D-(1---4)-galactose [58], and/or (3---6)-anhydrogalactose [59]. Substituents can be other monosaccharides (mannose, xylose), sulfate, methoxy and/or pyruvate groups and the pattern of sulfation dividing carrageenans into different families, for example, in C-4 for κ-carrageenan, and in C-2 for λ-carrageenan. In addition, the rotation of galactose in 1,3-linked residues divides agaroids from carrageenans [60]. Apart from agarans [60], found in species of Porphyra, Polysiphonia, Acanthophora, Goiopeltis, Bostrychia or Cryptopleura are also good sources of κ-carrageenan (E. spinosa and K. alvarezii), λ-carrageenan (Chondrus sp, G. skottsbergii and Phillophora) [61], I-carrageenan (E. spinosa) [62], and other heterogalactans with mannose and/ or xylose building up their backbones. Among these, we may find xylogalactans in N. fastigiata and xylomannans in S. polydactyla [63,64].
Regarding green algae, the information on their structures and applications is scarce. Wangs et al. [41] has made an excellent overview on those properties for the S-PSs from several genera of green algae. These S-PSs are very diverse and complex, with various types of glycosidic bonds between monomers, and include galactans (Caulerpa spp.), rhamnans (C. fulvescens and Enteromorpha), arabino- and pyruvylated galactans (Codium spp.), and the most known ulvans from Ulva spp and E. prolifera. Wang et al. [41] also included some repeating aldobiuronic di-units for the backbone of ulvans, containing aldobiouronic acid or glucouronic acid (U. armoricana and U. rigida, respectively), disaccharides sulfated xylose-sulfated-rhamnose, and a trisaccharide unit composed by 1,4-linked glucouronic acid, glucouronic acid and sulfatedrhamnose. The backbone of rhamnans seems to be somewhat simpler, but other types of glycosidic bonds can also appear. Four repeating disaccharide units were indicated for the homo polymer of M. latissimum [65]. Species from Codium are very interesting: their S-PSs may include different percentages of arabinose and galactose, giving place to arabinans (C. adhaerens [66], galactans (C. yezoense) [67], arabinogalactans [41]. Pyruvylated galactans were also identified in C. yezoense [67], C. isthmocladium [68] and C. fragile [69]. Some other species of Codium present other PS-types such as β-D-(1---4)-mannans in C. vermilara [70], or the rare β-D- (1---3)-mannans in C.
An overview on the antiviral activity against several kinds of virus and retrovirus, enveloped or naked was well documented by Carlucci et al. [96] & Wijesekara et al. [2]. These reviews focused on the HIV type 1 and type 2, the human papilloma virus (HPV), the encephalo-myocarditis virus, the hepatitis virus type A and type B and the dengue and yellow fever virus. The inhibition of infection by most of these viruses was explained by the action of S-PSs, which might block the attachment of visions to the host cell surfaces [97,98]. Another way of exerting their activity is by inhibiting the replication of the enveloped virus, such as the HIV, the human cytomegalovirus (HCMV) and the respiratory syncytial virus (RSV) [60,66,99], either by inhibiting the virus adsorption or the entry into the host cells. Some of the S-PSs are effective only if applied simultaneously with the virus or immediately after infection [60]. Another mechanism of action of fucoidans and other S-PSs is through the inhibition of the syncytium formation induced by viruses [2,100]. Some sulfated-xylomannans were reported to present antiviral sulfate-dependent activity, as it was the case of PSs from S. polydactyla and S. latifolium, which inhibited the multiplication of HSV-1 in Vero-cells [1,101]. Additionally, the molecular weight (MW) seems to play an important role in the antiviral properties of the S-PSs, the effect increasing with the molecular weight [60]. However, other structural features can be co-responsible for the reinforcement of the antiviral effectiveness, like sulfation patterns, composition and distribution of sugar residues along the backbone, and the complexity of the polymers [60,64,83,90]. Further, the fucoidans from L. japonica already proved their effectiveness in fighting both RNA and DNA viruses [54], such as poliovirus III, adenovirus III, ECHO6 virus, coxsackie B3 and A16 viruses. Moreover, these S-PSs can protect host cells by inhibiting the cytopathic activity of those viruses [102].
 In addition to their virucidal activity against HIV and other viruses associated to sexually transmitted diseases (STD) [103], including HPV, some carrageenans might find application as vaginal lubricant gels and coatings of condoms, with microbicidal activity, for they do not present any significant anticoagulant properties or cytotoxicity [104,105]. Furthermore, some fucoidans, apart from inhibiting attachment of virus particles to host cells, were able to inhibit the attachment of human spermatozoids to the zona pellucida of oocytes [106]; this property could be used for the development of a contraceptive gel with microbicidal characteristics [40]. The PSs from some algae, and which may be released into the culture medium, showed antiviral activity against different kinds of viruses, such as the HIV-1, HSV-1 and HSV-2, VACV and Flu-A, as described by Raposo et al. [72] S-PSs, in particular, proved to increase the antiviral capacity [107]. In fact, the antiviral activity of the PSs may depend on the culture medium, algal strain and cell line used for testing, but also on the methodology, and the degree of sulfation, as is the case of PSs from P. cruentum [108,72]. Despite the slight toxicity that some PSs may present, they could be safely applied in in vivo experiments, decreasing the replication of the virus VACV, for instance [109]. The mechanisms involved in the antiviral activity of S-PSs may be understood analyzing what happens when cells are infected by a virus. Just before infection, viruses have to interact with some glycosaminoglycan receptors (GAG), such as heparin sulphate (HS) [110]. The GAG to which a protein can be covalently bound are part of the target cell surface and can also be found in the intracellular matrix of various connective and muscle tissues. S-PSs may impair the attachment of the virus particles by competing for those GAG-receptors, as they are chemically similar to HS [96,111], most of them having a covalently linked core protein [112,113].
 Besides, as it happens with GAG, S-PSs are negatively charged and highly sulfated polymers [96,114,115], whose monosaccharide distribution pattern might influence the specificity of the bound protein, determining several biological functions [110]. For viruses to attach to the host cell surface, the linkage between the basic groups of the glycoproteins of the virus and the anionic components of the PSs (sulfate) at the cell surface must be established [83]. In fact, whichever the algal PSs are, either from algae, by mimicking this GAG, they may induce the formation of a virus-algal PSs complex, thus, impairing the cell infection by blocking the interaction virus-host cell receptor. Hidari et al. [114], for instance, showed that dengue virus (DENV) establishes an exclusive complex with fucoidan, and viral infection is, therefore, inhibited. They suggested that arginine-323 had a high influence on the interaction between the DENV-2 virus and the fucoidan, in an in-vitro experiment with BHK-21 cells. These researchers also found that glucuronic acid seems to be crucial since no antiviral activity was observed when this compound was reduced to glucose. Sulfated polysaccharides from algae, such as alginates, fucoidans and laminaran appear to have antibacterial activity against E. coli and species from Staphylococcus. A fucoidan from L. japonica and sodium alginate were found to inhibit E. coli [116], for example, by adhering to bacteria and killing those microorganisms [103], thus showing bactericidal properties. This type of PS is also a good antibacterial agent against Helicobacter pylori, eradicating their colonies, restoring the stomach mucosa, in clinical trial studies, and regenerating biocenosis in the intestines [117]. Laminaran from Fucus, Laminaria, A. nodosum and U. pinnatifida demonstrated to have an effect on pathogenic bacteria [118] as well, with the advantage of being unable to promote blood coagulation [119]. In contrast, the carrageenans from some seaweeds [120] and the S-PSs from the red algae Porphyridium cruentum, despite the higher concentration used [72], showed a significant inhibitory activity against S. enteritidis. In fact, some PSs from microalgae, such as A. platensis, may present antibacterial properties against some specific bacteria, the activity depending on the solvent used to extract the polymer [38]. By stimulating the production and/or expression of ILs, dectin-1 and toll-like receptors-2 on macrophages and dendritic cells, respectively, (1---3)-β-glucans from C. vulgaris, and laminarans, also induced antifungal and antibacterial responses in rats [121], and some resistance to mammal organisms towards infections by E. coli [122]. Therefore, these types of PSs promise to be good antimicrobial agents.
Anti-Inflammatory and immunomodulatory activities
 PSs from algae have long demonstrated to have biological and pharmaceutical properties, such as anti-inflammatory and immunomodulation [81,123,72]. Nevertheless, the antiinflammatory properties may be shown in several ways, depending on the PSs, its source and type/site of inflammation. There is growing evidence that S-PSs are able to interfere with the migration of leukocytes to the sites of inflammation. For example, the heterofucan from D. menstrualis decreases inflammation by directly binding to the cell surface of leukocytes, especially polymorphonuclear cells (PMNs). It completely inhibits the migration of the leukocytes into the peritoneal cavity of mice where the injured tissue was after being submitted to simulated pain and inflammation, without the production of pro-inflammatory cytokines [49]. Every so often, the recruitment of these PMNs shows to be dependent on P- and/or L-selectins, as it was demonstrated for fucoidans of some brown algae [33,124]. Some other studies refer the association of the anti-inflammatory activity with the immunomodulatory ability. This seems to be the case in the work by Kang et al. [125] who simulated an inflammation process in RAW 264.7 cells induced by lipopolysaccharides (LPS). They found that the fucoidan from E. cava inhibited, in a dose-dependent manner, the enzyme nitric oxide synthase induced by LPS (iNOS) and the gene expression for the enzyme cyclooxygenase-2 (COX-2) and, as a consequence, the production of nitric oxide (NO) and prostaglandin E2 (PGL2). Li et al. [65] confirmed the anti-inflammation mechanism in vivo via the immunomodulatory system in-vivo, since the fucoidan from L. japonica reduced the inflammation of rats’ myocardium damaged cells, by inactivating the cytokines HMG B1 and NF-κB, two groups of proteins secreted by the immune cells during inflammatory diseases. These protective and regenerative effects of fucoidans, via the immunomodulatory system, were also verified in the destruction/proteolysis of connective tissue by Senni et al. [126]. These researchers referred to the fact that severe inflammation and the subsequent excessive release of cytokines and matrix proteinases could result in rheumatoid arthritis or chronic wounds and leg ulcers, which could be treated with fucoidans [126].
 In addition to the SPs from Ulva rigida, green algae [127], the S-PSs p-KG03 from the marine dinoflagellate G. impudicum, also activates the production of nitric oxide and immunostimulates the production of cytokines in macrophages [128]. The enhancement of the immunomodulatory system by some S-PSs from marine algae is also a way for S-PSs to suppress tumour cells growth and their proliferation, and to be natural neoplastic-cell killers. Studies with arabinogalactan and other fucoidans revealed them to be immunostimulators by activating macrophages and lymphocytes, which suggests their effectiveness in the immuno-prevention of cancer [43,129]. The PSs from U. pinnatifida was also suggested to treat/relieve the symptoms of pulmonary allergic inflammation as it suppresses the activity of Th2 immune responses [130]. On the other hand, fucoidan activated macrophages and splenocytes to produce cytokines and chemokines [131]. PSs from algae, such as Porphyridium, Phaeodactylum, and C. stigmatophora, showed pharmacological properties, such as anti-inflammatory activity and as immunomodulatory agents, as reported by Raposo et al. [72]. Some of these S-PSs, for example, the ones from C. stigmatophora and P. tricornutum, have revealed anti-inflammatory efficacy in vivo and in vitro [132]. The mechanisms underlying the anti-inflammatory and immunomodulatory activities may be understood by making some considerations at the molecular level. On one side, the protein moiety that is covalently bound to most PSs seems to play a critical role in the activation of NF-κB and MAPK pathways involved in the macrophage stimulation [133,113]. This was evidenced in an in vitro experiment performed by Tabarsa et al. [113]. They showed that the PSs from C. fragile was not able to stimulate RAW264.7 cells to produce NO and the protein alone was also unable to induce NO release, but the complex S-PS-protein did inhibit the inflammatory process. On the other side, several other researchers found that proteins were not essential or responsible for the immunostimulatory responses of the cells [134,127]. Additionally, Tabarsa et al. [135] confirmed that the sulfate content and the MW were not crucial for the stimulation of murine macrophage cells. In fact, both desulfated and LMW-PS derivatives of C. fragile produced immunomodulatory responses similar to the ones of the original PSs. In contrast, the S-PSs from U. rigida induced a strong sulfatedependent release of NO [127], thus, the sulfate content showing to be essential for the stimulation of macrophages.
These researchers mentioned the possibility of the sulfate interfering in the interaction PS-cell surface receptors. The interaction of algal S-PSs with the complement system suggests that they might influence the innate immunity to reduce the proinflammatory state [91,81]. In addition, algal polysaccharides have been shown to regulate the innate immune response directly by binding to pattern recognition receptors (PRRs) [136]. For example, λ-carrageenan stimulated mouse T cell cultures in a tolllike receptor-4 (TLR4) [138]. Different effects were observed in other types of S-PSs: Zhou et al. [137] proved that carrageenans from Chondrus with LMW s better stimulated the immune system. The same trend was verified for the S-PSs from the red algae Porphyridium [139], a 6.53 kDa LMW-fragment at 100 μg/mL presenting the strongest immunostimulating activity. It is worth remarking that carrageenans from red seaweeds are recognized for triggering potent inflammatory and carcinogenic effects either in rats or mice cells [111]. However, while some carrageenans stimulate the activity of macrophages, others inhibit macrophage activities [2]. While PSs from various algae do not show anticoagulant and/or antithrombotic activities, attention should be paid to the anticoagulant properties of some PSs, since their use could cause severe bleeding complications.
Anti-proliferative, tumour suppressor, apoptotic and cytotoxicity activities
The current understanding of the anti-cancer and immunomodulating effects of PSs are as follows: (i) prevention of onset of cancer by oral consumption of mushrooms or their preparations; (ii) direct inhibition of growth of various types of cancer cells; (iii) immunostimulating activity against cancers in combination with chemotherapy; (iv) preventive effect on spreading or migration of cancer cells in the body [15]. On the whole, the indirect anti-cancer as well as immunostimulatory effects of lentinan is attributed to the activation of many immune cells. Lentinan can activate them to modulate the release cell signal messengers such as cytokines. The increases in cytokine production in immune cells have been studied in mice and in humans [140,141].
Because of the growing number of individuals suffering from different types of cancer and the secondary effects of synthetic chemicals and other types of treatment used against tumour damages, research was driven towards demand for natural therapeutics with bioactive compounds. In this context, S-PSs from both macro algae and micro algae already proved to have antitumor biological activities. A sulfated-fucoidan from C. okamuranus exhibited anti-proliferative activity in U937 cells by inducing cell apoptosis following a pathway dependent of Caspases-3 and -7 [142]. In another study, conducted by Heneji et al. [143], a similar fucoidan induced apoptosis in two different leukaemia cell lines. These results indicate that fucoidans might be good candidates for alternative therapeutics in treating adult T-cell leukaemia [43]. Sulfated-fucoidans from E. cava also seem to be promising to treat other types of human leukaemia cell-lines [144]. There was some evidence that the fucoidan from L. guryanovae inactivated the epidermal growth factor (tyrosine kinase) receptor (EGFR), which is greatly involved in cell transformation, differentiation and proliferation [145,146]. Therefore, this kind of S-PSs could be used as anti-tumor and anti-metastatic therapeutical/preventing agent, which might act either on tumour cells or by stimulating the immune response [147]. Further, the S-PSs from E. bicyclis and several other algae have demonstrated their potent bioactivity against different kinds of tumours, including lung and skin, both invitro and in-vivo [55,148-150] causing apoptosis in various tumour cell-lines [151,55,152].
The mechanisms involved in this antitumor activity might be associated again with the production of pro-inflammatory interleukins IL-2 and IL-12 and cytokine interferon-gamma (INF-γ) by the immune-stimulated macrophages, together with the increase of the activity of the natural killer cells (NK cells) and the induction of apoptosis [55,21]. NK cells can also upregulate the secretion of IFN-γ, which can activate either the T-cells for the production of IL-2 or the macrophages, which, after being activated, keep on producing IL-12 and activating NK cells [153,154]. The enhancement of the cytotoxicity of these NK cells (lymphocytes and macrophages) can be stimulated by other S-PSs such as fucoidans and carrageenans from other algae [129,137]. PSs can also activate some signaling receptors in the membranes of macrophages, such as Toll-like receptor-4 (TLR-4), cluster of differentiation 14 (CD14), competent receptor-3 (CR-3) and scavenging receptor (SR) [155]; these are also activated by other intracellular pathways, involving several other protein-kinases, that enhance the production of NO, which, in turn, plays an important role in causing tumour apoptosis [155]. These immunomodulation properties of S-fucoidans could be used for the protection of the damaged gastric mucosa as it was already demonstrated by using rat-models [156]. More information on the pathways and mechanisms responsible for the immune-inflammatory activities, including the involvement of the complementary system, may be found [60]. The anti-adhesive properties of some S-PSs, especially fucoidans might also explain their anti-metastatic activity, both in-vitro and in-vivo, in various animal models [157,33], as they can inhibit the adhesion of tumour cells to platelets, thus decreasing the possibilities of proliferation of neoplastic cells. The mechanisms by which fucoidans and other S-PSs exert their anti-adhesive ability were well documented by Li et al. [54]. Some researchers also highlighted the mitogenic properties and the cytotoxicity and tumoricidal activity of some arabinogalactans and fucoidans as well [129,158], either in different cell-lines or various animal models.
 The anti-adhesive properties of algal S-PSs may also be relevant as these polymers can block the adhesion of tumour cells to the basal membrane, thus demonstrating to impair implantation of tumour cells and metastatic activity by binding to the extracellular matrix [159]. For example, the S-PSs from Cladosiphon were shown to prevent gastric cancer in-vivo, since it inhibited the adhesion of H. pylori to the stomach mucosa of gerbils [160]. Metastasis appearance could also be reduced in vivo by sulfated-laminaran, a (1---3): (1---6)-β-D-glucan, because this compound inhibited the activity of heparanase, an endo-β-D-glucuronidase involved in the degradation of the main PSs component in the basal membrane and the extracellular matrix. The expression of this enzyme is known to be associated with tumour metastasis [161]. These anti-tumor properties may also be found in some PSs from platensis, which are inhibitors of cell proliferation [78]. Other S-PSs, such as S-PSs p-KG03 from G. impudicum, has also anti-proliferative activity in cancer cell lines and inhibitory activity against tumour growth [128,162,163]. Other PSs from algae, such as C. vulgaris, and S-PS or LMW-derivatives of S-PS from P. cruentum, for example, are described as having similar properties [38]. In some research work, the immunomodulatory activity was associated to the ability of inhibiting carcinogenesis. Jiao et al. [47] found that a sulfated-rhamnan and some derivatives from the green seaweed E. intestinalis suppressed tumour cell growth in-vivo, but they did not show any toxicity against tumour cells in-vitro.
The oral administration of the S-PSs to mice enhanced the spleen and thymus indexes, and also induced the production of TNF-α and NO in macrophages, increased lymphocyte proliferation, and enhanced TNF-α release into serum. The degree of sulfation may play some role in the carcinogenesis process, although the action of the S-PSs may also depend on the type of tumour. In fact, an over S-PSs demonstrated the capacity of inhibiting the growth of L-1210 leukaemia tumour in mice, but, on the other hand, it was unable to inhibit the growth of Sarcoma-180 tumour in mice [149,123]. In addition to the sulfation level, MW may also influence the anticancer activity. For instance, LMW-PS derivatives showed to enhance anti-tumor activity [164]. On the other hand, the increment in the anticancer activity greatly depends on the conditions of the PSs depolymerisation [165]. Kaeffer et al. [82] suggested that the in-vitro anti-tumor activity of LMW-PS sulfated or not, against cancerous colonic epithelial cells might be associated with the inhibition of tumour cells proliferation and/or differentiation.
Lentinan can also increase engulfing ability of certain immune cells to search and destroy migratory cancer cells in the human body [166,167]. Treatment with lentinan can also enhance production of chemical messenger such as nitric oxide to stimulate the immune system [140,168]. In addition, the immune-activating ability of lentinan may be linked with its modulation of hormonal factors, which are known to play a role in cancer growth. The anticancer activity of lentinan is strongly reduced by administration of hormones such as thyroxin orhydrocortisone [169]. Moreover, lentinan can also enhance the immune response to the presence of cancer cells in the body by triggering cancer-specific reactions to fight against them. The mechanism of anti-cancer activity of lentinan is summarized in Figure (1) [170]. Overall, lentinan can suppress the growth and even kill cancer cells directly via multiple pathways involving activation of human immune system by different mechanisms such as stimulation of various immune cells and production of cell signal messengers [171].
Anticoagulant and antithrombotic activities
There are several studies on the anticoagulant properties of PSs isolated from algae, presented in a recent review [72] by different researchers: Cumashi et al. [33], Athukorala et al. [172], Costa et al., [68], Wijesekara et al., [42] and Wang et al. [41]. The main sources of the S-PSs from green algae with anticoagulant properties are Codium and Monostroma [143,144]. Some of the PSs, such as S-rhamnans, showed their action by extending the clotting time via the intrinsic and extrinsic pathways [174]. In fact, Codium spp present strong anticoagulant effects [175,176], but other species from Chlorophyta also contain S-PSs (native, LMW or otherwise modified) with anticoagulant properties. The mechanism of action of the referred PSs is mostly attributed to either a direct inhibition of thrombin or by enhancing the power of antithrombin III [177,178]. Some other PSs from green seaweeds also showed potent anticoagulant properties but their mechanisms of action are associated not only to a direct increase in the clotting time (APTT assays) by inhibiting the contact activation pathway, but also by inhibiting the heparin cofactor II-mediated action of thrombin [179,180] thus showing a potent antithrombotic bioactivity. In addition to their anticoagulant properties demonstrated in-vitro by APTT and TT tests, several S-PSs from algae of different groups present antithrombotic qualities in-vivo [181,50] by increasing the time of clot formation. In fact, Wang et al. [41] published an exhaustive work on this issue by including a summary table with 24 references about both the anticoagulant, and anti-and prothrombotic activities of several S-PS from various green algae.
In two other studies, Costa et al. [68] & Wijesekara et al. [42] also included the S-PS from brown and red algae that present effects on the blood clotting time. Wijesekara et al. [42] referred to the fact that there are few reports on the interference of PSs from algae on the PT (prothrombin) pathway, meaning that most of the marine S-PSs may not affect the extrinsic pathway of coagulation [42]. As a matter of fact, Costa et al. [68] did not detect any inhibition in the extrinsic coagulation pathway (PT test), for the concentrations used; only C. cupressoides increased the clotting time. Also, they found no anticoagulant properties (APTT and PT assays) in the S-PS from S. filipendula (brown algae) and G. caudate (red algae). Additional, in our laboratory we found no anticoagulant properties in the S-PSs from different strains of the red algae P. cruentum, despite the high content in sulfate and molecular weight. As Costa et al. [68] observed this could be due to the absence of sulfate groups in the monosaccharides at the non-reducing ends of the branches, which impaired the interaction between target proteases and coagulation factors. Nishino et al. [87] & Dobashi et al. [182] defended that there might be no effect above an upper limit for the content in sulfate, since the difference in the anticoagulant and antithrombotic activities decreased with the increase of the sulfate content. It seems that some of the chemical and structural features of the S-PSs may have some influence on their anticoagulant and/ or antithrombotic activities. The degree and distribution pattern of sulfate, the nature and distribution of monosaccharides, their glycosidic bonds and also the molecular weight showed to play some role on the coagulation and platelet aggregation processes induced by sulfated-galactans and sulfated-fucoidans [68,183,184]. In fact, at least for some fucoidans, the anticoagulant properties are related to the content in C-2 and C-2, 3 di-sulfates, this last feature being usually common in these PSs [185,186,131]. Several other studies documented the anticoagulant activity and inhibition of platelet aggregation [54,111,43], supplying more information on the mechanisms of different S-PSs for these biological activities. HMW-PS usually presents stronger anticoagulant activity [187] and if PSs has a more linear backbone, a longer polymer is required to accomplish the same anticoagulant effects [88]. On the other hand, both the native PSs and LMW-derivatives of M. latissimum presented strong anticoagulant activities [188]. Nishino and colleagues also observed that HMW fucans (27 and 58 kDa) showed greater anticoagulant activity than the ones with LMW (~10 kDa) [189].
They found that a higher content of fucose and sulfate groups coincided with higher anticoagulant activities of fractions from E. kurome [189]. However, despite its high sulfation level, the galactofucan from U. pinnatifida lacks significant anticoagulation activity [159]. In addition, a sulfated-galactofucan from schröederi did not present any anticoagulant properties in-vitro but demonstrated a strong antithrombotic activity when administered to an animal model during an experimental induced venous thrombosis, this effect disappearing with the desulfation of the polymer [190]. As for other PSs, the anticoagulant properties of the PSs from marine algae may not only depend on the percentage of sulfate residues, but rather on the distribution/position of sulfate groups and, probably, on the configuration of the polymer chains [72]. Spirulan from A. platensis is one of the PSs from microalgae that strongly interfere with the blood coagulation-fibrinolytic system and exhibits antithrombogenic properties [97], then, promising to be an anti-thrombotic agent in clots’ breakdown, although care should be taken regarding hemorrhagic strokes [38].
Figure (4) summarizes the preponderant target sites for the S-PSs from marine organisms on the coagulation system. Blue and red arrows indicate anticoagulant and pro-coagulant effects, respectively. (+) indicates activation and (−) indicates inhibitory effects. Anticoagulant effect: SG and FCS inhibit the intrinsic tenase and prothrombinase complexes [202,203]. It is still unclear if sulfated fucans (SF) have similar effects. These PS also potentiate the inhibitory effect of antithrombin (AT) and/or heparin cofactor II (HCII) on thrombin [199,204]. Their effects on factor Xa are very modest. The serpin-independent action preponderates on the plasma system. Pro-coagulant effect: SG and FCS activate factor XII [205,206]. This effect may result in severe hypotension (due to bradykinin release) and pro-coagulant (pro-thrombotic) action. It is unclear if SF activates factor XII. SF inhibits Tissue Factor Protease Inhibitor (TFPI), a specific inhibitor of the extrinsic tenase complex. So, SF has a pro-coagulant effect [207,208]. Of course, further studies are necessary to investigate whether this distinct mechanism of action may confer favorable effects to the PSs for the prevention and treatment of thromboembolic events. In particular, it is necessary to clarify which one of the two mechanisms (serpindependent or serpin-independent) is more favorable for an antithrombotic therapy.
 Antilipidaemic, hypoglycemic and hypotensive activities
S-PSs from algae are potent inhibitors of human pancreatic cholesterol esterase, an enzyme that promotes its absorption at the intestinal level; this inhibitory effect is enhanced by higher molecular weights and degree of sulfation [2]. A sulfated-ulvan from U. pertusa in an in-vivo study using mice models regulated the ratio HDL/LDL-cholesterol and reduced the levels of triglycerides (TG) in serum [209]. On the other hand, in another experiment with rats and mice, using native ulvans from the same species, the animals experienced a hypocholesterolaemic effect but no reduction in the TG profile [210]. An opposite reaction was observed when the PSs was acetylated and over sulfated, as TG levels were normalized. It seems that the ability to sequester bile extracts may be involved [210]. The contents in sulfate and acetylate groups play important roles during the dislipidaemia process [211,212]. Ulvans from Ulva spp also showed antiperoxidative properties, preventing liver tissues from hyperlipidaemia, including that induced by toxic chemicals and protecting the injured tissue from the oxidative stress [213], and improving antioxidant performance of the animal models. In fact, these S-PSs regulated superoxide dismutase (SOD) and catalase, increased vitamins E and C, and reduced glutathione, and had some role in reducing the levels of aspartate and alanine transaminases in the rats’ liver [214,209]. Additionally, the S-PSs from M. nitidum also demonstrated hepatoprotective activity by increasing the expression of liver detoxifying enzymes, and, therefore, showed to be good agents for chemoprevention medicine [215].
The activity of these PSs may be related to their uronic acid and sulfate content, which are able to sequester and bind to bile acids [216], reducing their levels. Other S-PSs from green algae also revealed hypolipidaemic properties, such as that from E. prolifera. These PSs regulated the lipidic profile both in plasma and liver, increasing HDL-cholesterol, in rats [217]. Fucoidans from L. japonica, the native or LMW-derivate, have hypolipidaemic effects, decreasing total and LDL-cholesterol in the serum and TG in rats [218], and they prevented hyperchole-sterolaemia in mice [133]. Another mechanism to reduce blood cholesterol in humans by S-PSs is associated to their high capacity to inhibit pancreatic cholesterol esterase, which is responsible for the absorption of cholesterol and fatty acids at the intestine [2]. It seems that the presence of sulfate at the C-3 position of the sugar residues greatly enhances that inhibition [2]. Porphyran from P. yezoensis has antihyperlipidaemic properties [219,220] by reducing the release of apolipoprotein-B100 (apoB100) and decreasing the synthesis of lipids in human liver cultured cells [221]. By reducing the secretion of apoB100, porphyran has the potential to be used as a therapeutic agent to treat CVD. Additionally, some types of carrageenans have already proved to decrease blood cholesterol in humans [222] and in rats fed on a diet enriched with a mixture of κ/λ- carrageenans from G. radula [223]. Most of the PSs from marine algae are naturally highly sulfated, with high molecular weights, making them not easily absorbable and thus enabling them to be used as anticholesterolaemic agents. Few studies were carried out in this area, namely focusing on Porphyridium, P. cruentum, R. reticulata [224-227], but these suggest a strong potential of S-PSs from unicellular algae to be used as hypolipidaemic and hypoglycaemic agents, and as promising agents for reducing coronary heart disease, due to their hypocholesterolaemic effects [72]. As far as we know, scarce research was performed on the mechanisms underlying the antihyper-lipidaemic activity. However, the sequestration and disruption of the enterophatic circulation of the bile acids may be involved [209,228,229]. Ulvans and their LMW-derivatives, and also the S-PSs from Porphyridium showed to increase the excretion of bile [230,210]. Another explanation for the antihyperlipidaemic activity of S-PSs may be associated to the fact that they can effectively increase the anionic charges on the cell surface, which improve the removal of cholesterol excess from the blood, thus, resulting in a decrease of serum cholesterol [54]. In addition, most PSs have ion exchange capacity, such as those from Porphyridium and Rhodella [231], and they can function as dietary fibres. This could also explain the ability to lower down cholesterol [232]. PSs may act as dietary fibres, immunostimulating the goblet cells in the intestine to increase the release and effects of mucin [233]. Moreover, the administration of PSs may increase the viscosity of the intestinal contents, interfering with the formation of micelles and nutrient absorption, thus, lowering lipid absorption, and reducing gastrointestinal transit time (GTT) [230,57]. Other PSs have the ability to inhibit the enzyme α-glucosidase, thus improving the postprandial hyperglycaemia [234], and another can also reduce the blood pressure by inhibiting the release of plasma angiotensin II [235].
Wound healing and wound dressing
Due to their inherent biocompatibility, low toxicity, and pharmaceutical biomedical activity, various PSs, suchas chitin, chitosan, cellulose, hyaluronan, and alginate, have been widely used to prepare wound healing materials [236,142,237]. Hyaluronan, a major extracellular component with unique hygroscopic, rheological, and viscoelastic properties, has been extensively developed for tissue repair purposes due to its physicochemical properties and specific interactions with cells and extracellular matrix. It is generally accepted that hyaluronan plays multifaceted roles in the mediation of the tissue repair process and is involved in all the stages of wound healing, i.e. inflammation, granulation tissue formation, reepithelialization, and remodeling. Derivatives of hyaluronan, such as cross-linked, esterified or other chemically modified products have also been developed for tissue repair or wound healing purposes [238,239]. Remarkably, wound healing promoting activity of the materials is also important in the designing of materials for tissue engineering. All-natural composite wound dressing films prepared by dispersion and encapsulation of essential oils in sodium alginate matrices have been reported to show remarkable antimicrobial and antifungal properties and may find applications disposable wound dressings [240].
Chitosan/silk fibroin blending membranes crosslinked with dialdehyde alginate have been developed for wound dressing and the membranes were found to promote the cell attachment and proliferation, which suggests a promising candidate for wound healing applications [241]. Blending aqueous dispersions of sodium alginate and povidone iodine (PVPI) complex was prepared as free standing NaAlg films oras Ca2+ cross-linked alginate beads. These products were demonstrated to show antibacterial and antifungal activity and controlled release of PVP Iinto open wounds when the composite films and beads were brought into direct contact with water or with moist media [240]. This proved that they could be suitable for therapeutic applications such as wound dressings. In situ injectable nano-composite hydrogels composed of curcumin, N, O-carboxymethyl chitosan, and oxidized alginate as a novel wound dressing was successfully developed for dermal wound repair application [139]. In-vitro release, in-vivo wound healing, and histological studies all suggested that the developed nanocurcumin/ N, O-carboxymethyl chitosan/ oxidized alginate hydrogel as apromising wound dressing might have a potential application in the wound healing. Silver nanoparticles containing polyvinyl pyrrolidone and alginate hydrogels were synthesized using gamma radiation and showed the ability of preventing fluid accumulation in exudating wound [242]. The incorporation of nanosilver particles provided as trong antimicrobial effect and therefore made such polyvinyl pyrrolidone/alginate hydrogels suitable for use as wound dressing. Except the alginate and its various derivatives, other natural PSs such as cellulose, chitin, chitosan, and hyaluronic acid have also been explored for wound dressingor wound healing applications [243-245].
Antioxidant activity
Oxidation is an essential process for all living organisms for the production of energy necessary for biological processes [246]. In addition, oxygen-centered free radicals are involved in development of a variety of diseases, including cellular aging, mutagenesis, carcinogenesis, coronary heart disease, diabetes and neurodegeneration [247]. Though almost all organisms possess antioxidant defense and repair systems to protect against oxidative damage, these systems are often insufficient to prevent the damage entirely [98]. Recently, much attention was paid to screening natural biomaterials in the case of several clinical situations since use of synthetic antioxidants is restricted due to their carcinogenicity [135]. Among various natural antioxidants, PSs in general has strong antioxidant activities and can be explored as novel potential antioxidants [248,249]. Recently, PSs isolated from fungal, bacterial and plant sources were found to exhibit antioxidant activity and were proposed as useful therapeutic agents [250,251].
essential process for all living organisms for the production of energy necessary for biological processes [246]. In addition, oxygen-centered free radicals are involved in development of a variety of diseases, including cellular aging, mutagenesis, carcinogenesis, coronary heart disease, diabetes and neurodegeneration [247]. Though almost all organisms possess antioxidant defense and repair systems to protect against oxidative damage, these systems are often insufficient to prevent the damage entirely [98]. Recently, much attention was paid to screening natural biomaterials in the case of several clinical situations since use of synthetic antioxidants is restricted due to their carcinogenicity [135]. Among various natural antioxidants, PSs in general has strong antioxidant activities and can be explored as novel potential antioxidants [248,249]. Recently, PSs isolated from fungal, bacterial and plant sources were found to exhibit antioxidant activity and were proposed as useful therapeutic agents [250,251]. The main mechanism by which S-PSs from green algae exert their primary antioxidant action is by scavenging free-radicals (DPPH-radicals) or by inhibiting their appearance [251]. They also demonstrated to have total antioxidant capacity, and a strong ability as reducing agents and as ferrous chelators [251]. However, some S-PSs, such as sulfated-heterogalactan from C. cupressoides do not show a good scavenging power, but they are rather powerful against reactive oxygen species (ROS) [252]. It is interesting to note that fucoidans from brown algae seem to exert a reducing power bigger than the S-PSs from other groups [68]; the PSs from S. filipendula has an effect even stronger than vitamin C. Moreover, the fucoidan from L. japonica has a great potential to be used in medicine in order to prevent free-radical mediated diseases, as it successfully prevented peroxidation of lipids in plasma, liver and spleen in-vivo, despite showing no effects in-vitro
The S-PSs from S. fulvellum has shown a NO scavenging activity higher than some commercial antioxidants [253]. In addition, the S-PSs from the red algae P. haitanensishas demonstrated to decrease antioxidant damages in aging mice [254]. It seems that LMWS- PS may present higher antioxidant activity than the native polymers, as it was verified with the PSs from U. pertusa and E. prolifera [255,256]. It is probably related with the ability of PSs to be incorporated in the cells and to donate protons [42]. As noted by Raposo et al. [72], S-PSs produced and secreted out by marine algae have shown the capacity to prevent the accumulation and the activity of free radicals and reactive chemical species. Hence, S-PSs might act as protecting systems against these oxidative and radical stress agents. The S-PSs from Porphyridium and Rhodella reticulata exhibited antioxidant activity [257,258], although some research revealed no scavenging activity and no ability to inhibit the oxidative damage in cells and tissues for the crude S-PSs with high molecular weight from P. cruentum, while the PS-derived products after microwave treatment showed antioxidant activity [259].
In all cases, the antioxidant activity was dose dependent. PSs from A. platensis also exhibit a very high antioxidant capacity [260]. Due to their strong antioxidant properties, most of the S-PSs from marine algae are promising since they may protect human health from injuries induced by ROS, which can result in cancer, diabetes, some inflammatory and neurodegenerative diseases, and some other aging-related disorders, such as Alzheimer and CVD. The influence of sulfate content on the antioxidant activity depends rather on the origin of the PSs. For example, the PS from U. fasciata and other algae with lower sulfate content demonstrated a strong antioxidative power [261,262,258,259], while the antioxidant activity observed in PSs from E. linza and other seaweeds showed to be sulfate-dependent [263,264]. Furthermore, high sulfated PSs were shown to have an enhanced scavenging power [251,265], this property being also dependent on the sulfate distribution pattern [68]. It seems, in addition, that the protein moiety of PSs may play some role on the antioxidative power. For example, Tannin-Spitz et al. [258] reported a stronger antioxidant activity for the crude PSs of Porphyridium than for the denatured PSs. Zhao et al. [266] found that the antioxidant activity of S-PSs was apparently related, not only to MW and sulfated ester content, but also to glucuronic acid and fructose content. This antioxidant activity seems to be attributable to metal chelating, free radical and hydroxyl radical scavenging activities of the S-PSs.
Toxicity of polysaccharides
The toxicity of polysaccharide is very crucial to the development of any product for the medical treatments. An animal experiment was conducted to evaluate the toxicity of polysaccharide and the results found that no toxicity was exhibited to the liver, kidney, heart, thymus or spleen of the mice which were fed with the polysaccharide conjugate and none of the mice died throughout the period of the experiment. There was no significant difference between the thymus index, spleen index and liver index of the mice from the test and control groups. It might be a candidate of dietary supplements besides the bioactivities as a polysaccharide [267- 293].
To read more about this article: https://irispublishers.com/wjass/fulltext/new-trends-of-the-polysaccharides-as-a-drug.ID.000572.php
Indexing List of Iris Publishers: https://medium.com/@irispublishers/what-is-the-indexing-list-of-iris-publishers-4ace353e4eee
Iris publishers google scholar citations: https://scholar.google.co.in/scholar?hl=en&as_sdt=0%2C5&q=irispublishers&btnG=
1 note · View note