Tumgik
#deep_sky_object.
phonemantra-blog · 7 months
Link
A new release of Gaia data has revealed half a million faint stars in the globular cluster Omega Centauri. This discovery helps fill gaps in maps of the galaxy and will allow scientists to study the structure of the cluster. The European Space Agency (ESA) has unveiled new and improved data about our galaxy and outer space with the release of 5 new pieces of data collected by the Gaia space telescope. Among the mission's findings, the release identified half a million dim stars in the massive Omega Centauri cluster. The new stars discovered by Gaia inhabit one of the densest regions of the sky. The Gaia mission's previous third edition of observations provided information on more than 1.8 billion stars, providing a fairly comprehensive view of the Milky Way and beyond. However, gaps remained in the map of the galaxy. In those areas that are particularly densely “populated” with stars, the usual observing regime reached its limits, which left these areas poorly unexplored - Gaia did not notice dim stars. Globular clusters are a good example of such regions. These clusters, which are among the oldest objects in the Universe, are of particular interest to scientists who study the history of the cosmos. But their bright, star-filled cores can obscure telescopes. Thus, they remain invisible regions on maps of the Universe. [caption id="attachment_66850" align="aligncenter" width="780"] Omega Centauri[/caption] To fill the gaps in Gaia's maps, it chose Omega Centauri, the largest globular cluster visible from Earth and a good example of a "typical" cluster. Instead of focusing just on individual stars, in this survey Gaia used a special observing mode, creating 2D images using the Sky Mapper tool. New Gaia Data Release: Half a Million New Stars in Omega Centauri “In Omega Centauri, we discovered more than half a million new stars that Gaia had not seen before – and that’s just in one cluster,” says lead author Dr. Katja Weingrill, Gaia project leader at the Leibniz Institute for Astrophysics in Potsdam. “The new data has allowed us to discover stars that are so close to each other that they cannot be accurately detected using the regular Gaia survey. With the new data, we will be able to study the structure of the cluster, the distribution of its constituent stars and their motion, and create a complete overview of the Omega Centauri cluster. This was using Gaia’s capabilities to their full potential,” adds co-author and member of the Gaia Collaboration, Dr. Alexey Mints. The discovery exceeds Gaia's normal capabilities, as the Sky Mapper instrument was originally intended only for calibration. The team used an observing mode designed to ensure the smooth operation of all telescope instruments. And I didn’t plan to use it for scientific research. Gaia is now exploring eight more areas using this approach, the results of which will be included in Gaia Data Release 4. The data will help astronomers better understand what's going on inside these cosmic building blocks, helping data scientists pinpoint the age of our galaxy, accurately determine its center, find out how stars change throughout their lives, clarify models of the evolution of galaxies and clarify the age of the Universe. In addition to the major discovery, the new Gaia release also reveals more than 380 possible gravitational lenses, improves the orbits of more than 150,000 asteroids within the solar system, maps the disk of the Milky Way, and characterizes the dynamics of 10,000 binary stars.
0 notes
phonemantra-blog · 7 months
Link
The research team studied the planetary nebula's central star in the star cluster, determining that it had lost 70% of its mass over its lifetime. It also turned out that the star has an unusual chemical composition and does not contain hydrogen. Stars like our Sun end their lives as white dwarfs. Some of them are surrounded by a planetary nebula, consisting of gas ejected by a dying star just before the outburst. An international research team led by Professor Klaus Werner from the Institute of Astronomy and Astrophysics at the University of Tübingen studied the central star of a planetary nebula located in an open star cluster. Scientists were able to accurately determine the mass that the central star lost during its life. There are more than a thousand open star clusters in our Galaxy. Each of them includes up to several thousand stars that were formed from a dense cloud of gas and dust. “The stars in the cluster are of the same age, and this is of particular importance for astrophysics,” says Klaus Werner. They differ only in their mass. “The greater the mass of a star, the faster it consumes its nuclear fuel, burning hydrogen into helium. So the life of a large star is shorter and it turns into a white dwarf faster,” he explains. [caption id="attachment_68877" align="aligncenter" width="780"] nebula Messier 37[/caption] Observation of a star cluster shows the development of stars of different masses at the same age. “In astronomy, star clusters can be used as a kind of laboratory where we can test how correct our theories of stellar development are. One of the most uncertain aspects of the theory of stellar development is how much matter a star loses during its life. Stars like our Sun lose almost half their mass by the time they become white dwarfs. Stars eight times heavier than the Sun lose about 80% of their mass,” says the astrophysicist. The mass of white dwarfs in star clusters can be directly related to their mass at birth. Data on very young white dwarfs is especially valuable because they are the central stars of planetary nebulae. But none of their central stars in such nebulae have been studied before because they are all very distant and dim. The research team pointed one of the world's largest telescopes, the ten-meter GRANTECAN telescope, at the central star in the Messier 37 cluster and analyzed its spectrum. They were able to determine the star's mass to be 0.85 solar masses, meaning an original mass of 2.8 solar masses. How the central star of the planetary nebula Messier 37 survived the loss of 70% of its mass “The star thus lost 70% of its matter during its lifetime,” explains Werner. Another feature is its special chemical composition. There is no longer any hydrogen left on its surface. This points to an unusual event in its recent past - a short-term burst of nuclear reactions. The ability to accurately determine the start-to-end mass relationship of a star is of fundamental importance in astrophysics. It determines whether a star becomes a white dwarf, becomes a neutron star during a supernova, or becomes a black hole at the end of its life. From the ejected matter at the moment of “rebirth” of the star, new generations of stars are formed, enriched with heavy elements as products of nuclear reactions. The chemical evolution of galaxies, and ultimately the entire Universe, depends on this.
0 notes