Tumgik
clinicab · 18 days
Text
بیوراکتور غشایی MBR
بیوراکتور غشایی MBR
یکی از روش هایی که بر اساس لجن فعال و برای رفع مشکلات این روش به ویژه کاهش مراحل فرایند تصفیه (حذف ته نشینی و گند زدایی) و نیز به دست آوردن راندمان بسیار بالا در کاهش مواد آلاینده آلی ابداع و توسعه پیدا کرد ، روش بیوراکتور غشایی است.
این فرایند شامل یک راکتور  بیولوژیکی شبیه فرایند لجن فعال است، با این تفاوت که عملیات جداسازی لجن از آب توسط یک سیستم میکروفیلتراسیون (غشا) انجام می شود.
این سیستم شامل ورق های مسطح با فیلتراسیون صفحه ای است و در معرض فشار بالا با مقدار 5/3 بار در ورودی عمل می کرد و دارای نرخ پایین جریان و بازده متوسط نفوذپذیری بود.
محققان پیشرفت فنی در زمینه تصفیه فاضلاب شهری را که شامل حذف بارهای آلودگی فرساینده بوده را در چند سال گذشته به طور قابل توجهی گسترش دادند و جریان فرآیند تصفیه خانه های فاضلاب را بهبود بخشیدند .
پساب تصفیه خانه فاضلاب فیلتراسیون میکرو و فوق العاده، همراه با فرآیند لجن فعال را در سال های اخیر روشی مناسب برای به حداقل رساندن میکروبها می دانند.
بنابراین می توان استانداردهای تخلیه را برای پساب های تصفیه فاضلاب بدون نیاز به مخازن معمولی هوادهی و شفاف سازی ثانویه یا کارخانه های تصفیه و ضد عفونی تشدید کرد.
MBR به طور گسترده برای تصفیه فاضلاب شهری و صنعتی استفاده می شود.
فواید جایگرینی فن آوری بیوراکتور غشایی  با تصفیه مرسوم فاضلاب شهری (فناوری 2004 هوبر):
اکثر الزامات نظارتی فعلی توسط مرحله جداسازی غشاء برآورده خواهد شد
فناوری بیوراکتور غشایی یک تکنیک صرفه جویی در فضا است. طراحی مبتنی بر ماژول آن اجازه می دهد تا ظرفیت به راحتی در صورت نیاز افزایش یابد.
کاهش قیمت ممبران در سال های آینده ادامه خواهد داشت.
تصفیه بیولوژیکی را با مرحله جداسازی غشایی ترکیب می کند.
این ترکیب، مزایای متعددی نسبت به تصفیه معمولی لجن فعال و به دنبال آن مخزن ته نشینی دارد:
مخزن ته نشینی به دلیل جدا شدن غشاء غیر ضروری است.
بیوراکتورهای غشایی غوطه ور می توانند تا 5 برابر کوچکتر از یک گیاه لجن فعال معمولی باشند
بیورآکتورهای غشایی را می توان در جامدات معلق مشروب تا 20000 میلی گرم در لیتر مخلوط کرد.
غلظت زیست توده می تواند بیشتر از سیستم های معمولی باشد که حجم راکتور را کاهش می دهد.
غشاء می تواند مواد محلول با وزن مولکولی بالا را حفظ کند،
و منجر به بهبود تجزیه زیستی آن در بیوراکتورشود.
کیفیت پساب خوب.
قابلیت ضد عفونی خوب، با کاهش قابل توجه باکتری ها و ویروس ها با استفاده از غشاهای UF و MF قابل دستیابی است.
آشنايي با فرآيند MBR در تصفيه فاضلاب
1-مقدمه
فرآيند MBR يك سيستم تصفيه فاضلاب يكپارچه است كه از تركيب فرآيند تصفيه بيولوژيكي (لجن فعال) با يك سيسـتم ممبراني مستغرق تشكيل شده است. اين فرآيند با ادغام واحدهاي ته نشـيني (زلال سـازي)، هـوادهي و فيلتراسـيون در يـك راكتور، جايگزين فرآيند هاي تصفيه متعارف (لجن فعال متعارف) شده و يك سيستم ساده و موثر را تشكيل مي دهد كه هزينه هاي سرمايه گذاري اوليه و هزينه هاي بهره برداري سيستم را كاهش مي دهد.
در اين فرآيند با جايگزيني واحـد تـه نشـيني ثقلي با سيستم جداكننده ممبراني، منافع زيادي از قبيل افزايش پايداري در بهره برداري، كاهش توليد لجـن مـازاد و كيفيـت بسيار بالاتر پساب خروجي بدست مي آيد.
بنابراين اين سيستم، فرآيند مناسبي است كه مي توانـد در محـدوده وسـيعي بـراي سيستمهاي استفاده مجدد از پساب تصفيه شده در تصفيه فاضلابهاي شهري و صنعتي بكار گرفته شود.
۲ -فرآيند لجن فعال بدون استفاده از مخزن ته نشيني (با استفاده از ممبران به روش MBR )
فرآيند MBR يك فرآيند لجن فعال رشد معلق است كه با يك سيستم ممبرانـي (معمـولا از نـوع ممبـران هـاي رشـته اي توخالي (fiber Hollow (يا نوع لوله اي (Tubular ( (ادغام شده است. در اين فرآيند ، سيستم ممبراني نقش واحـد تـه نشيني (زلال سازي) در جداسازي جامدات معلق در سيستم لجن فعال متعارف را بر عهده دارد.
اين موضـوع در شـكل شـماره يك به خوبي نشان داده شده است.
در فرآيند MBR معمولا ممبران ها بصورت مستغرق در واحد هوادهي قرار داشـته و بصـورت مسـتقيم بـا فاضـلاب و مـايع مخلوط (liquor Mixed (در تماس مي باشند. در اين فرآيند با استفاده از پمپ مكش، با صرف انرژي كمـي، خـلا بوجـود مي آيد كه استخراج پساب تصفيه شده از درون ممبران ها به بيرون را به دنبال دارد.
علاوه بر اين در اين فرايند، مقداري هوا نيز از كف واحد هوادهي به اين واحد وارد مي شود تا سطح خارجي رشته هاي ممبراني را تميز نموده و جامدات پذيرش نشـدهتوسط ممبران ها را از سطح ممبران ها كنار زده و جابجا نمايد. لجن مازاد در اين فرآيند نيز معمولا بصورت مسـتقيم از واحـد هوادهي به خارج پمپ مي شود.
۳ -آشنايي با ممبران/مدول (Module/Membrane ) ۳-۱ -رشته خالي تقويت شده (محكم شده)
يك رشته (ميكرو تيوب) شكل داده شده ممبراني (مانند شكل شماره ۲) (كه بصورت مستغرق در فاضلاب قرار مي گيـرد)، بـا امكان فيلتراسيون ذرات ميكرو و ويروس ها و باكتريها، ساختار متخلخلي را بوجود مي آورده كه امكان بدست آوردن پساب بـا كيفيت بسيار بالاتر را فراهم نموده و مي تواند براي تصفيه فاضلاب سيستم بسيار مناسبي باشد.
۳-۲ -مقاومت مكانيكي بسيار بالاي ممبران ها
هرچند امكان تخريب سطح ممبران ها در اثر تاثيرات فيزيكي و اصطكاك بين رشته هاي ممبران هـا در اثـر هـوادهي وجـود دارد، اما تقويت ممبران ها و محكم نمودن از شكست آنها تحت شرايط هوادهي زياد جلوگيري مي كنـد. لازم بـه ذكـر اسـت تقويت ممبران ها با محكم نمودن ممبران هاي رشته اي از دو طرف و ساخت مدول هاي ممبراني حاصل مي شود.
۳-۳ -تراوائي (قابليت نفوذ) بسيار خوب ممبران ها
٤ ساختار اسفنجي با تخلخل زياد لايه هاي رشته اي ممبران ها، با قدرت انتخابگري بالا در عبـور ذرات بسـيار ريـز، تراوائـي و قابليت نفوذ بسيار خوبي براي ممبران ها فراهم مي كند كه منافع زيادي را به دنبال دارد.
۳-۴ -خصوصيات مدول هاي ممبراني
هر مدول از ممبران شامل ساختاري از چند رشته توخالي ممبران است كه جهت فيلتراسيون در آنها از خارج بـه داخـل اسـت. علاوه بر اين هر مدول از اين ممبران ها شامل گروهي از رشته هاي توخالي است كه درون يك فريم (قـاب) مسـتطيلي قـرار گرفته است (مانند شكل شماره ۳ .
(دو انتهاي هر يك ار فيبرهاي رشته اي ممبرانـي بـه بـالا و پـايين هـدرها (Headers) متصل است. هر هدر شامل يك لايه رزين متخلخل است كه رشته ها بمنظور اينكه محتوياتشان بـه كانـال هـاي جمـع آوري آبهاي نفوذي اتصال پیدا کند، در آنجا به هم می رسند.
هر مدول ممبراني شامل صدها رشته ممبران یک اندازه كه بطور عمودي بين دو هدر و تيرحائل قرار می گیرد. چنـد مدول ممبران اسمبل  با هدر مشترك در فريم هاي مختلف درون واحد هوادهي در فرآيند MBR نصب است.
۴ -فوائد بكارگيري فرآيند لجن فعال ممبراني يا MBR
الف – اشغال فضاي كم در اين فرآيند معمولا ممبران ها بصورت مستقيم و مستغرق در يك مخزن هـوادهي قـرار گرفتـه و در نتيجـه مقـادير بـالاي غلظت مايع مخلوط يا MLSS به ميزان متوسط ۸۰۰۰ تا ۱۲۰۰۰ ميليگرم در ليتر در حين بكارگيري و بهره بـرداري از ايـن سيستم در مخزن هوادهي حاصل مي شود. به اين ترتيب و با توجه به حذف واحدهاي ته نشيني، ضـدعفوني و فيلتراسـيون از سيستم متعارف تصفيه، فضاي مورد نياز جهت اشغال توسط فرآيند لجن فعال ممبراني يا MBR به مراتب كوچكتر (حـدود ۴ برابر كمتر از فرآيند لجن فعال متعارف) از فضاي اشغال شده سيستم هاي لجن فعال متعارف مي باشد. ب – امكان تغيير آسان فرآيندهاي لجن فعال متعارف به لجن فعال ممبراني واحدهاي تصفيه موجود به راحتي با استغراق ممبران ها در واحدهاي هوادهي مي توانند بـه سيسـتم لجـن فعـال ممبرانـي بـا راندمان بسيار بالاتر تغيير پيدا نمايند. ج- مدولار و به آساني قابل توسعه سيستم مدولار ممبراني با افزودن مدول هاي ديگري از ممبران ها به آساني براي رسيدن به ظرفيت هاي بالاتر قابل توسـعه است. د- كاهش توليد لجن مازاد در اين فرآيند بدليل زمان ماندگاري بالاي لجن، توليد لجن مازاد تا ۷۰ درصد كاهش پيدا مي كند. ه- كنترل كارآمد گرفتگي ها هواي تميز كننده كه از كف مدول هاي ممبراني به واحد هوادهي وارد مي شود و شستشوي معكوس و اتوماتيك ممبـران هـا، سيستم كارآمدي را بوجود آورده و از گرفتگي آنها جلوگيري مي كند.
۵ -كاربردهاي فرآيند ممبران بيورآكتور يا MBR
فرآيند ممبران بيوراكتور يا MBR براي كاربري هاي زير مناسب است:
براي ارتقاء ظرفيت تصفيه خانه هاي فاضلاب در حال بهره برداري
 تصفيه فاضلابهاي با غلظت بالا نظير فاضلاب صنايع غذايي و داروسازي
این تصفيه فاضلابهاي با غلظت بالاي آمونيوم نظير شيرابه ها
و تصفيه فاضلابهاي بهداشتي بخصوص در مناطقي كه بلحاظ فضاي تصفيه خانه محدوديت وجود دارد.
استفاده مجدد و بازگردش پساب تصفيه شده تصفيه خانه هاي فاضلاب
شكل شماره ۴ دو كاربرد از كاربردهاي فرآيند MBR را نشان می دهد.
برخي پارامترهاي بهره برداري و راندمان حذف و كيفيت پساب خروجي از فرآيند MBR در جداول شـماره ۳ و ۴ ارائـه شـده است.
بیوراکتور غشایی
تفاوت اصلی بین بیوراکتور غشایی و کارخانه های تصفیه سنتی فاضلاب که از لجن فعال برای گام نهایی تصفیه استفاده می کردند، استفاده از غشا برای جداسازی جامدات و تصفیه فاضلاب می باشد. بیوراکتورهای غشایی می توانند در هر دو نوع رشد متصل و معلق توسعه پیدا کنند.
بیوراکتورهای غشایی از دو بخش عمده بیولوژیکی و مدول غشایی تشکیل می شود. در واحد بیولوژیکی تشکیل شده در بیوراکتور، میکروارگانیزم های قرار داده شده تجزیه ی بیولوژیکی ترکیبات را به عهده دارند و در مدول غشایی عمل جداسازی فیزیکی ترکیبات از آب انجام می شود.
سیستم های بیوراکتور های غشایی جایگزین مناسبی برای لجن فعال متعارف می باشد و از این طریق باعث بهبودی جداسازی لجن و پساب خروجی می شوند. غشا موجود در MBR  از خروج جامدات بیولوژیکی و جامدات محلول با وزن ملکولی بالا، از بیوراکتور جلوگیری می کند و تقریبا تمام مواد آلی در داخل MBR  به آب و دی اکسید کربن تبدیل می شود.
در سیستم های MBR  هیچ گونه وسیله ی متحرکی وجود ندارد و هوادهی سیستم با استفاده از هوادهی دیفیوزری انجام می شود.
روند تصفیه و اصول اساسی طراحی رآکتور MBR
بیوراکتورهای غشایی فرایندهای تصفیه بیولوژیکی معمولی به عنوان مثال لجن فعال (Activated Sludge) را با فیلتراسیون غشایی ترکیب می کنند تا سطح پیشرفته ای از مواد جامد آلی و معلق را فراهم کنند. وقتی بر اساس آن طراحی شوند، این سیستم ها می توانند سطح پیشرفته ای از مواد مغذی را نیز حذف کنند.
در یک سیستم بیوراکتور غشایی (MBR) ، غشاها در یک راکتور بیولوژیکی هوادهی غوطه ور می شوند. تخلخل غشاها از 0.035 میکرون تا 0.4 میکرون است (بستگی به سازنده دارد) که بین میکروفیلتراسیون (Micro Filtration) و اولترافیلتراسیون (Ultra Filtration)می باشد.
این سطح از فیلتراسیون اجازه می دهد تا پساب با کیفیت بالا از غشا گرفته شود و فرآیندهای ته نشینی (sedimentation) و فیلتراسیون را که معمولاً برای تصفیه فاضلاب استفاده می شود، حذف کند. از آنجا که نیاز به رسوبگذاری برطرف می شود، فرایند بیولوژیکی می تواند با غلظت مایع مخلوط (mixed liquor) بسیار بالاتر کار کند.
لذا مخزن مورد نیاز فرآیند را به طور چشمگیری کاهش می دهد و اجازه می دهد بسیاری از تصفیه خانه های موجود بدون افزودن مخازن جدید به روز شوند. برای تأمین هوادهی مطلوب و آب شستشو در اطراف غشاها، مایع مخلوط مخلوط معمولاً در محدوده جامدات 1.0-1.2 درصد نگهداری می شود، یعنی 4 برابر تصفیه خانه های معمولی.
غشا (Membrane)
در طول تصفیه فاضلاب به روش MBR، جداسازی جامد و مایع توسط غشاهای میکروفیلتراسیون (MF) یا اولترافیلتراسیون (UF) حاصل می شود.
غشا یا ممبران به سادگی یک ماده دو بعدی است که برای جداسازی اجزای مایعات معمولاً بر اساس اندازه نسبی یا بار الکتریکی استفاده می شود. قابلیت غشایی که اجازه انتقال فقط ترکیبات خاص را بدهد، نیمه نفوذپذیر (semi-permeability) نام دارد.
این یک روند فیزیکی است، جایی که اجزای جدا شده از نظر شیمیایی بدون تغییر باقی می مانند.
انواع غشاهای مورد استفاده در MBR
مارپیچی
صفحه و قاب
فیبر توخالی
لوله‌ای
دیسک دوار
بهره برداری و نگهداری
سامانه های بیوراکتور غشایی به طور هفتگی از تمیز کردن نگهدارنده شیمیایی استفاده می کنند که 30 تا 60 دقیقه به طول می انجامد.
 هنگامی که فیلتراسیون دوام بیشتری ندارد، یک یا دو بار در سال اتفاق می افتد که تمیز کردن را انجام می دهد.
“رسوب غیرقابل جبران” (irrecoverable fouling) گرفتگی ای است که با روشهای تمیز کردن موجود قابل جبران نیست .
گرفتگی یا فولینگ (Fouling)
سیستم های مدرن MBR با مواد شیمیایی نگهداری می شوند، بنابراین خارج کردن غشاها از مخزن غشا ضروری نیست. رسوب و گرفتگی مواد آلی (Organic) را می توان با هیپوکلریت سدیم و رسوب معدنی با اسید اگزالیک (oxalic acid) تمیز کرد.
فولینگ به عنوان یک نتیجه از فعل و انفعالات بین غشا و مایع مخلوط رخ می دهد که یکی از اصلی ترین محدودیت های فرآیند MBR است.
دلایل اصلی رسوب و گرفتگی غشا عبارتند از:
جذب ماکرومولکولی
رشد بیوفیلم ها در سطح غشا
رسوب مواد معدنی
بالا رفتن طول عمر غشا
 کار و نگهداری سیستم های MBR معمولاً توسط کارگران ماهر انجام می شود .
انها باید لجن سیستم بیولوژیکی را آبگیری کرده (به عنوان مثال آبگیری (dewatering) مکانیکی یا بستر خشک کردن (drying bed)) و با خاکستر ذخیره در یک محل دفن زباله کنترل کرده و بسوزانند.
سیستم های بیورآکتور غشایی به طور گسترده ای در تصفیه خانه های فاضلاب شهری و صنعتی استفاده می شود. علاوه بر این، MBR ها نیز برای تصفیه شیرابه دفن زباله (landfill leachate) مناسب هستند. این یک سیستم پیشرفته است که به طراحی متخصص و اپراتورهای حرفه ای نیاز دارد
مزایای استفاده از سیستم MBR موارد ذیل می باشد:
تامین اکسیژن محلول به منظور تجزیه کامل مواد آلی،
ایجاد نیروی حرکتی به منظور حرکت مارپیچی فاضلاب در نتیجه افزایش زمان تماس و افزایش تجزیه میکروبی،
حذف جامدات موجود در سیستم بدون شستشوی معکوس و حذف لجن،
عدم تولید بوهای نامطلوب با جایگزینی جداسازی جامدات به وسیله ته نشینی ثقلی در حوضچه ته نشینی ثانویه با جداسازی غشایی
تماس با ما:
تماس باما
0 notes
clinicab · 18 days
Text
    زئولیت
                        زئولیت
کاربرد زئولیت در تصفیه آب و فاضلاب
زئولیت (Zeolite) یکی از قوی ترین فیلترهای طبیعی می باشد که در تصفیه آب و فاضلاب، کشاورزی و غیره کاربرد داشته و به دلیل عدم ثبات یونی و قدرت بالا در جذب آب می توانند در حذف آلاینده ها کمک موثری داشته باشند.
این ماده معدنی که دارای ساختاری متخلل می باشد، می تواند جایگزین مناسبی برای دانه های شن  در فیلتر شنی به شمار رود. گروه صنعتی هفت؛ تولیدکننده تجهیزات آب و فاضلاب، در ادامه به معرفی کامل این ماده معدنی پرداخته و کاربرد کاتالیزوری، جذب و تبادل یونی آن را بررسی نموده و به کاربرد آن در تصفیه فاضلاب صنعتی و بهداشتی و آب آشامیدنی می پردازد.
زئولیت چیست؟
زئولیت یکی از مواد معدنی خانواده آلومینوسیلیکات هیدارته می باشد که دارای ساختاری چهارضلعی بوده و توسط اکسل فردریک کرونستد؛ کانی شناس سوئدی در سال 1756 میلادی نام گذاری شد. این گروه از مواد معدنی قدرت کاتالیزوری بالایی داشته و می توانند با تبادل یونی و قدرت جذب بالا، فلزات سنگین و مواد آلی و آلاینده های موجود در آب و فاضلاب را حذف کنند.
این مواد معدنی دارای سطحی سرشار از بار می باشند و به همین دلیل به عنوان مبدل های کاتیونی در برخی از صنایع از جمله تصفیه آب و فاضلاب مورد استفاده قرار میگیرند. بار روی سطح Zeolite در اثر جایگزینی ایزومورفیک سیلیکون با آلومینیوم در ساختار این ماده معدنی بدست آمده است.
اساس کار زئولیت
کاربرد گسترده زئولیت در صنایع مختلف، وجود خواص کاتالیزوری، تبادل یونی و جاذب این مواد می باشد که می توانند تاثیر بسیار زیادی در حذف فلزات سنگینی مانند آهن، منگنز، روی و مس داشته باشند. اساس کار این مواد به شرح زیر می باشد:
خاصیت کاتالیزوری
از مهم ترین خواص زئولیت ها می توان به قدرت بالای آنها در تسریع واکنش های شیمیایی بر پایه اسید و دارای مواد آلی اشاره نمود. به همین دلیل است که این مواد در پالایشگاه های نفت و پتروشیمی کاربرد گسترده ای داشته و در تسریع واکنش های آنها به صورت موثری عمل می کند.
قدرت جذب بالا
از دیگر ویژگی های بسیار مهم زئولیت می توان به قدرت جذب بالای آنها اشاره نمود. متخلل بودن سطح رویی Zeolite یک نقطه مثبت برای غربال گری مولکول هایی با اندازه های مختلف به شمار می رود. علاوه براین، این مواد قدرت بالایی در جذب آب و برخی از مواد آلی فرار در هوا دارند.
تبادل یونی
یکی از بزرگترین مشکلات در تصفیه آب، سختی گیری و حذف فلزات باردار معلق می باشد که به روش های مختلفی از قبیل تبادل یونی می توان این مشکل را برطرف نمود. ساختار متخلل زئولیت دارای کاتیون های هیدراته می باشند که می توانند نقش موثری در تبادل یونی ایفا نمایند.  لازم به ذکر است که Zeolite قدرت بالایی در حذف آلومینیوم و یون سایر فلزات سنگین با تبادل یونی داشته و به همین دلیل است که در تصفیه آب آشامیدنی کاربرد زیادی دارد.
کاربرد زئولیت در تصفیه آب
یکی از بزرگترین مشکلات موجود در صنعت تصفیه آب آشامیدنی، وجود یون های فلزات سنگین از قبیل کلسیم، منیزیم، روی و آلومینیوم در آب می باشد که اصطلاحا باعث افزایش درجه سختی اب میشود.
این مواد منجر به آسیب وارد شدن به دستگاه گوارشی شده و همچنین بدن را در تولید سنگ مثانه و کلیه مستعد می کند. به همین دلیل با روش های مختلف لازم است درجه سختی آب کاهش پیدا کند که یکی از روش های کاربردی در این زمینه، استفاده از زئولیت در تصفیه آب آشامیدنی می باشد.
قدرت بالای زئولیت ها در تبادل یونی و حذف یون های فلزات سنگین می تواند تاثیر بسیار مطلوبی در افزایش کیفیت آب و حذف رنگ و بو و کدورت آن ایجاد کند. البته لازم به ذکر است که قدرت این مواد در حذف آلاینده های موجود در آب به نوع آلاینده ها و مقدار آنها و همچنین phو مقدار آمونیاک و همچنین دمای آب بستگی دارد.
کاربرد زئولیت در تصفیه فاضلاب
Tumblr media
از دیگر کاربردهای بسیار مهم زئولیت ها می توان  به تصفیه فاضلاب بهداشتی و صنعتی اشاره نمود. وجود مواد آلاینده بسیار مضر از قبیل نیتروژن و فسفر و سایر مواد آلی در فاضلاب بهداشتی یا انسانی یکی از نگرانی های بزرگ می باشد که با روش های مختلف باید از ورود آنها به طبیعت جلوگیری نمود.
با استفاده از زئولیت و انجام تبادل یونی می توان این مواد را حذف نمود. البته لازم به ذکر است که به منظور افزایش قدرت آن برای تصفیه فاضلاب با روش های مختلف از قبیل اسیدشوی سورفکتانت این ��واد اصلاح میشوند.
زئولیت اصلاح شده همچنین قدرت بالایی در حذف مواد سمی و آرسنیک و ذرات رادیواکتیو موجود در فاضلاب های صنعتی دارند. همان طور که اشاره شد، Zeolite دارای قدرت جذب بالایی نیز می باشد که می توان از آن برای جذب گازهایی از قبیل فرمالدئید و مونواکسید کربن موجود در فاضلاب های صنعتی استفاده نمود. همچنین لازم به ذکر است که زئولیت قادر به حذف کلینوپتیلولیت و شابازیت ها از فاضلاب های صنعتی می باشد.
علیرغم قدرت بسیار بالای Zeolite در تصفیه فاضلاب و حذف مواد آلاینده موجود در آنها، از سایر روش های شیمیایی و تصفیه بیولوزیکی در فرایند تصفیه استفاده میشود تا کیفیت پساب های خروجی تا حد زیادی افزایش پیدا کنند.
سایر کاربردهای زئولیت
سه ویژگی مهم موجود در زئولیت ها از قبیل کاتالیزور، تبادل یون و جذب باعث شده است تا از این مواد با اهداف مختلفی استفاده شود. علاوه بر کابرد زئولیت در تصفیه فاضلاب و آب، از آنها در مصارف زیر نیز استفاده میشود:
مکمل مواد غذایی دام و طیور
تولید اکسیژن در استخرهای نگهداری و پرورش ماهی
تصفیه آب استخر شنا
بهبود خاک کشاورزی و باغبانی
حذف آمونیاک و آمونیوم در فاضلاب
مزایای زئولیت در تصفیه آب و فاضلاب
مهم ترین نقاط مثبت و مزایای استفاده از زئولیت در تصفیه فاضلاب و آب عبارتند از:
قدرت جذب بالا و حذف گازهای سمی در تصفیه فاضلاب صنعتی
قدرت بالا در کاهش سختی آب و حذف فلزات سنگین از قبیل روی، مس، آهن، منیزیم و آهن موجود در آب
حذف کدورت، رنگ و بو آب
حذف آمونیاک در لجن و آب های موجود در استخر که به شدت برای رشد ماهی ها مضر می باشند
قدرت آبگیری بالا
قیمت ارزان نسبت به رزین
طراحی و تولید انواع فیلترهای تصفیه آب
گروه صنعتی هفت یکی از بزرگترین و قدیمی ترین تیم ها در زمینه طراحی و تولید تجهیزات تصفیه آب و فاضلاب می باشد که از جمله محصولات آنها می توان به فیلتر شنی فیلتر کربنی اشاره نمود. تمام محصولات این تیم زیر نظر مهندسین حرفه ای و پس از تحقیق و بررسی شرایط تصفیه خانه و نوع مواد آلاینده طراحی و تولید میشوند.
برای برقراری ارتباط با این تیم و دریافت مشاوره رایگان قبل از خرید یا سفارش ساخت هر یک از محصولات گروه صنعتی هفت می توانید از راه های ارتباطی ذکر شده در پایین صفحه استفاده نمایید.
بررسی فرآیند تصفیه آب با زئولیت
صنعت تصفیه آب همواره در حال تحقیق، آزمایش و توسعه روش‌های جدید و بهبود یافته برای تصفیه فاضلاب و آب آشامیدنی است که هم کارآمد و هم دوستدار محیط زیست باشد. یک راه حل پایدار و طبیعی ، « تصفیه آب با زئولیت » است.
فرآیند تصفیه آب با زئولیت و سایر کانی ها
Tumblr media
زئولیت چیست؟
هنگامی که سنگ یا خاکستر آتشفشانی با آب های قلیایی واکنش می دهد، ماده طبیعی « زئولیت » ایجاد می گردد. در تصفیه آب، رایج ترین آلومینوسیلیکات های خانواده کلینوپتیلولیت هستند که از غلظت های مختلف آلومینیوم سیلیس، اکسیژن و سایر عناصر مانند کلسیم (Ca)، پتاسیم (K) و سدیم (Na) ساخته شده اند.
ساختار و ترکیب آن ها می تواند این مواد را ریز متخلخل و بسیار متمایل به قابلیت تبادل کاتیونی کند. زئولیت ها را می توان به راحتی با محلول گرم شده آلومینا، سیلیس و هیدروکسید سدیم به صورت مصنوعی تولید کرد.
مزیت منحصر به فرد کلینوپتیلولیت ؛ خواص فیزیکی، شیمیایی، جذب، یونیزاسیون، احیا و کاتالیزوری آن است. کلینوپتیلولیت می تواند آمونیاک، نیترات، نیتروژن، سولفید هیدروژن، فلزات سنگین، کربن-اکسیژن، مشتقات نفت و غیره را جذب کند. همچنین می تواند موارد زیر را با اثر کاتالیزوری از آب جذب و یا جدا نماید:
پتاسیم (K)، آهن (Fe)، منگنز (Mn)، استرانسیم (Sr)، سرب (Pb)، مس (مس)، نقره (Ag)، جیوه (Hg) و … .
تصفیه آب با زئولیت
مزیت اصلی فناوری زئولیت ، جذب فیزیکی/شیمیایی، تبادل یونی و خواص کاتالیزوری آن است که می تواند به صورت زیر باشد:
ساختار یکنواخت و حجم منافذ زیاد
قطر منافذ 0.1-1.0 نانومتر (nm)
فیلتر ذرات بزرگتر از یک میکرون
محدوده جذب زیاد
کاهش فلزات سنگین، آمونیوم و ترکیبات هیدروژن از طریق قابلیت جذب منحصر به فرد خود
جذب مواد شیمیایی و نفتی
چه چیزی محیط تصفیه آب با زئولیت را به یک فیلتر خوب تبدیل می کند؟
وقتی صحبت از فیلترها می شود، هرچه منافذ داخل محیط آن بیشتر باشد، عملکرد فیلتراسیون کارآمدتر است. زئولیت‌ها و به‌ویژه محیط‌های کلینوپتیلولیت دارای منافذ زیادی هستند، بنابراین نه تنها ذرات را بین دانه‌های خود جذب می‌کنند، بلکه می‌توانند آن ها را روی سطح محیط نیز بکشانند.
این فرآیند یک اثر فعال است که در آن ذرات به جای گیرکردن غیرفعال بین دانه‌ها به سطح محیط می‌چسبند.
این تا حدی توسط ظرفیت کانی‌های زئولیت برای تبادل کاتیونی انجام می‌شود، به این ترتیب که یون‌های مثبت آب (یعنی فلزات محلول، سدیم، آمونیاک) را می‌گیرد و آن‌ها را با چیز دیگری جایگزین می‌کند که قبلاً به دستگاه تبادل یونی متصل شده بود.
زئولیت به دلیل چگالی بالای منافذ خود ، سطح بسیار موثری دارد به این معنی که می تواند غلظت بالایی از آلاینده های فیزیکی را قبل از نیاز به شستشوی معکوس جذب کند.
کاربردهای عمومی زئولیت در تصفیه آب و فاضلاب
حذف ذرات کدورت سه تا پنج میکرون
جایگزین مستقیم برای دستگاه فیلتر شنی با ظرفیت بارگیری رسوب 2.8 برابر
حذف کاتیون های فلزات سنگین
جداسازی هیدروکربن های خاص و سایر آلاینده ها
تصفیه آب
کاربردهای خاص
نرم کننده آب
مواد معدنی سختی مانند کلسیم و منیزیم اگر در غلظت‌های کافی وجود داشته باشند، می‌توانند باعث ایجاد مشکلاتی در سیستم‌های لوله‌کشی توزیع شوند. با این حال در یک نقطه خاص، غلظت آن ها در منبع آب به سطح اشباع بیش از حد می رسد و شروع به رسوب خارج از محلول می کند که باعث محدود شدن جریان به لوله ها و شیرها شود.
زئولیت قادر به تبادل یون های کلسیم و منیزیم در آب است، به این معنی که اگر با محلول آب نمک سدیم/پتاسیم بازسازی شود، می تواند به عنوان یک نرم کننده آب عمل کند. (بازدهی دو برابر)
حذف آهن در تصفیه آب با زئولیت
اگر پس از باز کردن شیر آب با رنگ قهوه ای آب در جریان مواجه شده اید ، به احتمال زیاد آهن موجود در آن بیش از حد نرمال است. آهن بیش از حد می تواند برای سلامتی انسان خطرزا باشد. بنابراین کاهش سطح آهن در آب آشامیدنی نیز ضروری است. زئولیت سدیم به واسطه خواص جذب و تبادل یونی خود قادر به کاهش سطح آهن تا حد زیادی می باشد.
زئولیت، یک ماده معدنی بسیار مهم و پر کاربرد است که جاذب رطوبت بوده و حرارت تولید می کند. این ماده از آلومینوسیلیکات تشکیل شده و به نوبه خود انواع مختلفی دارد. هر نوع ویژگی ها و مصارف خاص خود را داشته و به دسته های گوناگونی قابل تقسیم است. کلینوپتیلولیت یکی از ارقام پرکاربرد این کانی معدنی می باشد.
این ماده در بسیاری از بایگانی های فروش مواد معدنی عرضه می شود. قیمت زئولیت کلینوپتیلولیت بر اساس عوامل گوناگونی تعیین می گردد.
زئولیت، نوعی کانی معدنی با ویژگی های جالب توجه است؛ که نخستین بار در سال 1756 توسط یک کانی شناس سوئدی کشف و نامگذاری گردید. این واژه، حاصل ترکیب دو کلمه یونانی به معنای جوش و سنگ می باشد. بخش عمده مصارف تجاری آن به جاذب سطحی بودن آن مربوط می شود.
از میان نمونه های طبیعی آن، نه گونه کلی آن در طبیعت یافت می شوند؛ که کلینوپتیلولیت یکی از آنها��ت. کلینوپتیلولیت از جمله کانی هایی است؛ که شکستگی های ناصاف دارد. به طور کلی کلینوپتیلولیت از نظر کانی شناسی، شبیه سایر زئولیت ها می باشد.
در ادامه به ذکر مهم ترین ویژگی های این ماده معدنی خواهیم پرداخت:
بلورهای پهن و کوتاه
طیف رنگی آن بین سفید و قرمز است.
شفاف یا نیمه شفاف است.
در گروه سیلیکات ها قرار می گیرد.
انواع زئولیت مصنوعی
Tumblr media
به طور کلی بیش از چهل نوع زئولیت در طبیعت شناخته شده است. اما در یک دسته بندی بسیار کلی همه آنها را به نه گروه اصلی تقسیم می کنند. در ادامه مهم ترین نوع طبیعی انها را نام می بریم:
clinoptilolite
analcime
chabazite
erionite
faujasite
ferrierite
laumontite
mordenite
pillipsite
کاربرد انواع زئولیت در ایران را باید بر اساس نوع و مشخصات آن بیان کرد. مثلاً به طور معمول خرید نانوزئولیت جهت استفاده در مصارف زیر انجام می شود:
بخش های مختلف صنعت کشاورزی
حذف یون های فلزات سنگین موجود در محلول های مختلف
جهت فیلترهای نانویی
به عنوان کاتالیزور اف سی سی
تبدیل متانول به بنزین
اما مهم ترین و اساسی ترین کاربردهای انواع مختلف زئولیت را می توان به دسته های کلی زیر تقسیم نمود:
مصارف کشاورزی
محصولات صنعتی
محصولات خانگی
محیط زیست
تصفیه انواع آب
رادیواکتیو و رآکتور
بیشترین مصرف زئولیت در ایران به بخش کشاورزی و همچنین تصفیه آب و فاضلاب مربوط می شود. در اینجا مهم ترین کاربردهای کشاورزی آن را بیان می کنیم:
کنترل بو
ماده جذب کننده رطوبت در زراعت
حاصل خیزی را افزایش می دهد.
به عنوان ماده افزدونی در خوراک دام و طیور
پرورش انواع گل و گیاه
در گلخانه ها
پرورش درخت
اصلاح خاک (به خصوص برای خاک چمن)
احداث جنگل ها و مراتع
محوطه سازی
در سیستم های آبکشت کاربرد دارد.
جداسازی آمونیاک از استخرها یا حوضچه های پرورش آبزیان
تماس با ما:
تماس باما
0 notes
clinicab · 18 days
Text
نمک زدایی آب دریا
Tumblr media
.
نمک زدایی آب دریا
بیش از 97 درصد آب روی زمین به دلیل شوری برای مصرف انسان نامناسب است. اکثریت قریب به اتفاق (حدود 99٪) از این آب دریا است، و بیشتر مابقی آن را آب های زیرزمینی شور تشکیل می دهد .نمک زدایی آب شور نوید منابع آبی تقریباً نامحدود را برای تمدن های بشری در مناطق ساحلی دارد.
با این حال، تصفیه آب دریا گران و انرژی بر است و اغلب اثرات نامطلوب زیادی بر اکوسیستم دارد.
با وجود این اشکالات، نمک زدایی می تواند یک انتخاب تکنولوژیکی مناسب در تنظیمات خاص باشد.
پیشرفت های تکنولوژیکی همچنان باعث کاهش هزینه های اقتصادی و زیست محیطی نمک زدایی می شود (WHO، 2007).
تکامل تکنولوژیکی: قابل اجرا بودن مستقیم (ده ها کارخانه نمک زدایی در حال حاضر در ژاپن در حال فعالیت هستند)
نیازهای موجود: نیاز به کاهش اثرات خشکسالی در مناطقی که ممکن است به دلیل تغییرات آب و هوایی دچار خشکسالی شوند. این نیازها به ویژه در جزایر کوچک و جاهایی که منابع آب شیرین محدودی دارند زیاد است.
اثرات سازگاری: تأمین منابع آب برای مقابله با خشکسالی ناشی از تغییرات آب و هوایی
نمای کلی و ویژگی ها
سه روش برای نمک زدایی وجود دارد:
تبخیر: روشی برای به دست آوردن آب شیرین با تراکم بخار حاصل از تبخیر آب دریا.
اسمز معکوس: روشی برای به دست آوردن آب شیرین با فیلتر کردن آب دریا تحت فشار با استفاده از یک غشای نیمه تراوا که آب دریا نمی تواند از آن عبور کند.
الکترودیالیز: روشی برای به دست آوردن آب شیرین با استفاده از غشاء مخصوصی که می تواند آب دریا را به ماده رقیق و غلیظ جدا کرده و سپس آب شیرین را از ماده رقیق استخراج کند. این در مرحله تحقیقات تجربی است
Tumblr media
توضیح نمک زدایی آب دریا
نمک زدایی آب دریا فرآیندی است که در آ�� نمک و سایر اجزای تشکیل دهنده برای تولید آب خالص حذف می شود. تقریباً 75 میلیون نفر در سراسر جهان به نمک‌زدایی متکی هستند.
انتظار می‌رود که این تعداد افزایش یابد زیرا منابع آب شیرین توسط رشد جمعیت تحت فشار قرار می‌گیرند . در نتیجه میلیون‌ها نفر دیگر به شهرهای ساحلی با منابع آب شیرین ناکافی نقل مکان می‌کنند .
نمک زدایی بیشترین کاربرد را در مناطق خشک دارد. بیش از نیمی از ظرفیت (حجم) نمک زدایی جهان در خاورمیانه و شمال آفریقا قرار دارد.
آب دریا بیش از 50 درصد از منابع آب شیرین کن در سراسر جهان را تشکیل می دهد. با این حال، تا سال 2005 در ایالات متحده، تنها 7 درصد از کارخانه های نمک زدایی از آب دریا استفاده می کردند.
آب های شور اکثریت آب های منبع برای نمک زدایی را تشکیل می دهند . بیشتر مابقی آن را آب رودخانه ها و فاضلاب تشکیل می دهند .
دو جریان آب از نمک زدایی حاصل می شود:
(1)  آب محصول خالص
(2)جریان زباله یا آب نمک با غلظت بالا
روش‌های اصلی نمک‌زدایی به دو دسته تقسیم می‌شوند: فرآیندهای حرارتی (شکل 1) و فرآیندهای غشایی (شکل 2).
عملیات حرارتی از گرما برای تبخیر آب استفاده می‌کند . نمک‌های محلول یا جریان زباله را پشت سر می‌گذارد و آن را از آب خالص جدا می‌کند.
فرآیندهای غشایی از اسمز معکوس و فشار بالا استفاده می کنند تا آب شور را از فیلترهای بسیار ظریف و متخلخل عبور دهند. نمک ها را حفظ می کنند و آب خالص را در یک طرف غشاء و جریان زباله را در طرف دیگر باقی می گذارند.
 بخش عمده ای از آب زمین در دریاها و اقیانوس ها یافت می شود. نمک زدایی فرصتی را برای جوامع ساحلی ایجاد می کند تا به منابع آب شیرین تقریبا نامحدود دسترسی داشته باشند.
علاوه بر این، می توان از تکنیک های نمک زدایی برای تصفیه آب شور در مناطقی که آب دریا نفوذ می کند، استفاده کرد. با توجه به سازگاری با تغییرات اقلیمی، این یک منبع حیاتی برای مناطقی است که منابع آب شیرین موجود دیگر نمی‌تواند از جمعیت محلی پشتیبانی کند .
Tumblr media Tumblr media
شکل2
نمک زدایی حرارتی
فرآیندهای نمک‌زدایی حرارتی معمولاً از گرما برای تبخیر آب استفاده می‌کنند و اجزای محلول را پشت سر می‌گذارند.  طی فرایندی بخار آب متراکم شده و  آب  بدست می اید. تقطیر ساده ترین  فرآیندهای حرارتی است و بهره وری انرژی این فرآیند ساده رو به بهبود می باشد .
تقطیر
رایج ترین فرآیند نمک زدایی حرارتی امروزه تقطیر چند مرحله ای فلاش (MSF) است. در سال 2005، MSF 36 درصد از نمک‌زدایی در سراسر جهان را تشکیل می‌دهد (شکل 3). MSF کارایی انرژی تقطیر ساده را با استفاده از یک سری محفظه‌های کم فشار، بازیافت گرمای اتلاف، بهبود می‌بخشد و در برخی موارد، می‌تواند با استفاده از گرمای اتلاف یک نیروگاه مجاور با راندمان بالاتری کار کند.
تبخیر
تبخیر با اثر چندگانه (MEE) (همچنین به عنوان تقطیر با اثر چندگانه شناخته می شود) فرآیند حرارتی دیگری است که از محفظه های کم فشار استفاده می کند. دستیابی به کارایی بسیار بیشتر در MEE نسبت به MSF امکان پذیر است. با این حال، MEE آنقدر محبوب نیست (شکل 3 را ببینید) زیرا طرح های اولیه با پوسته پوسته شدن مواد معدنی مواجه بودند.
طرح های جدیدتر پوسته پوسته شدن مواد معدنی را کاهش داده اند و MEE در حال افزایش محبوبیت است . برای عملیات های کوچکتر با نیاز به حجم حدود 3000 متر مکعب در روز، تقطیر فشرده سازی بخار (VCD) می تواند یک گزینه تقطیر حرارتی مناسب باشد.
VCD از نظر فنی یک فرآیند ساده، قابل اعتماد و کارآمد است که برای استراحتگاه ها، صنایع و مکان های کاری که در آن آب شیرین کافی در دسترس نیست، محبوب است .
نمک زدایی غشایی
فرآیندهای نمک‌زدایی غشایی از فشار بالا استفاده می‌کنند تا مولکول‌های آب را از طریق منافذ بسیار کوچک (سوراخ‌ها) وارد کنند در حالی که نمک‌ها و سایر مولکول‌های بزرگ‌تر را حفظ می‌کنند. اسمز معکوس (RO) پرکاربردترین فناوری نمک‌زدایی غشایی است و در سال 2005 46 درصد از ظرفیت نمک‌زدایی جهانی را به خود اختصاص داده است (شکل 3).
نام این فرآیند از این واقعیت ناشی می شود که از فشار برای هدایت مولکول های آب در سراسر غشاء در جهتی بر خلاف جهت حرکت طبیعی آنها به دلیل فشار اسمزی استفاده می شود. از آنجایی که باید بر فشار اسمزی غلبه کرد، انرژی مورد نیاز برای هدایت مولکول‌های آب در سراسر غشا مستقیماً با غلظت نمک مرتبط است.
RO
بنابراین، RO اغلب برای آب های شور استفاده می شود که غلظت نمک کمتری دارند و در سال 1999، تنها 10 درصد از نمک زدایی آب دریا در سراسر جهان را به خود اختصاص داده است .
با این حال، بهره وری انرژی و اقتصاد RO با توسعه غشاهای پلیمری بادوام تر، بهبود مراحل پیش تصفیه و اجرای دستگاه های بازیابی انرژی به طور قابل توجهی بهبود یافته است. در بسیاری از موارد، RO در حال حاضر مقرون به صرفه تر از روش های حرارتی برای تصفیه آب دریا است.
نمک زدایی توسط چهار فرآیند حرارتی و غشایی که در بالا مورد بحث قرار گرفت نشان داده می شود 90 درصد از حجم جهانی را دربرمی گیرد.
Tumblr media
شکل3
الکترودیالیز
الکترودیالیز (ED) از جریان برای حذف یون‌ها از آب استفاده می‌کند. برخلاف فرآیندهای غشایی و حرارتی که در بالا توضیح داده شد، ED نمی تواند برای حذف مولکول های بدون بار از آب منبع استفاده شود (Miller, 2003). نمک زدایی آب با انجماد در دمای کمی کمتر از 0 درجه سانتی گراد نیز امکان پذیر است، اما این کار شامل مراحل پیچیده ای برای جداسازی فاز جامد و مایع است و معمولاً انجام نمی شود.
با این حال، در آب و هوای سرد، چرخه های طبیعی انجماد-ذوب برای تصفیه آب با هزینه های رقابتی با RO مهار شده است . علاقه به برداشت انرژی خورشیدی منجر به پیشرفت قابل توجهی در فرآیندهای تقطیر خورشیدی شده است.
نمک زدایی هیبریدی
نمک‌زدایی هیبریدی که فرآیندهای حرارتی و غشایی را ترکیب می‌کند و معمولاً به موازات یک تأسیسات تولید برق عمل می‌کند، یک فناوری نوظهور امیدوارکننده است که با موفقیت اجرا شده است .
غشاهای نانوفیلتراسیون (NF) نمی‌توانند شوری آب دریا را تا حد قابل شرب کاهش دهند، اما برای تصفیه آب‌های شور استفاده شده‌اند. غشاهای NF در صورت همراه شدن با RO یک مرحله پیش تصفیه محبوب هستند.
پیشرفت در فناوری نمک‌زدایی افزایشی بوده است که منجر به بهبود مداوم در بهره‌وری انرژی، دوام و کاهش بهره‌برداری و نگهداری در بسیاری از فناوری‌ها شده است.
با این حال، فناوری های جدید در تحقیق و توسعه به طور بالقوه می تواند منجر به پیشرفت های بزرگ شود. این فناوری های نوظهور شامل نانو لوله ها ، غشاهای پیشرفته الکترودیالیز و غشاهای بیومیمتیک هستند.
نمک‌زدایی آب دریا چه زمانی مؤثر است؟
نمک‌زدایی آب دریا زمانی مؤثر است که در بخش‌های آبی با سیاست‌های قوی آب، منابع آبی مشخص و تقاضا، و تخصص فنی قوی اجرا شود. با توجه به بودجه و تقاضای محلی برای منابع آب شیرین، گزینه‌های متعددی برای نیروگاه‌های نمک‌زدایی، روش‌های تصفیه آب و منابع انرژی بالقوه برای نمک‌زدایی (مانند انرژی جایگزین مانند باد) وجود دارد.
ویژگی های آب شور مانند شوری، دما، سطح عمومی آلودگی و غیره در انتخاب تکنولوژی تاثیر زیادی دارد. به عنوان مثال، فرآیندهای غشایی برای آب شور، که معمولاً غلظت نمک کمتری دارد، مناسب‌تر هستند.
ممکن است قبل از شروع فرآیندهای نمک‌زدایی، پیش تصفیه (مثلاً میکروفیلتر کردن جلبک‌ها از آب دریا) مانند فرآیندهای رسوب‌گذاری پیشرفته برای جریان زباله (از جمله خنک‌سازی در صورت لزوم) مورد نیاز باشد.
مزایای نمک زدایی آب دریا
نمک زدایی می تواند تا حد زیادی به سازگاری با تغییرات آب و هوایی کمک کند، در درجه اول از طریق تنوع بخشیدن به منابع آب و انعطاف پذیری در برابر تخریب کیفیت آب می تواند کمک کننده باشد.زمانی که منابع آب فعلی از نظر کمی یا کیفیت ناکافی باشند، تنوع بخشیدن به تامین آب می تواند منابع جایگزین یا مکمل آب را فراهم کند.
فن‌آوری‌های نمک‌زدایی همچنین انعطاف‌پذیری را در برابر تخریب کیفیت آب فراهم می‌کنند، زیرا معمولاً می‌توانند آب محصول بسیار خالص را حتی از آب‌های منبع بسیار آلوده تولید کنند.
افزایش تاب آوری در برابر کاهش سرانه آب شیرین یکی از چالش های کلیدی سازگاری با تغییرات آب و هوایی است. هم خشکسالی کوتاه مدت و هم روندهای اقلیمی بلندمدت کاهش بارندگی می تواند منجر به کاهش سرانه آب در دسترس شود. این روندهای اقلیمی به موازات رشد جمعیت، تغییر کاربری اراضی و کاهش آب های زیرزمینی رخ می دهند. بنابراین، کاهش سریع در دسترس بودن سرانه آب شیرین محتمل است.
دسترسی به منبع کافی آب شیرین برای مصارف شرب، خانگی، تجاری و صنعتی برای سلامت، رفاه و توسعه اقتصادی ضروری است (WHO، 2007)، و نمک زدایی می تواند دسترسی به آب را برای مناطق بالقوه تحت تنش آبی یا خشک فراهم کند. در بسیاری از تنظیمات، فرآیندهای نمک‌زدایی می‌توانند دسترسی به آب‌های شور فراوانی را که قبلاً غیرقابل استفاده بوده‌اند، فراهم کنند.
به دلیل کیفیت بالای آب خروجی، آب آشامیدنی سالم را تامین می کند. همچنین می تواند برای سایر بخش ها مانند صنایعی که به منابع آب بسیار خالص مانند داروسازی نیاز دارند، آب تامین کند.
معایب نمک زدایی آب دریا
اشکالات عمده فرآیندهای نمک زدایی فعلی شامل هزینه ها، انرژی مورد نیاز و اثرات زیست محیطی است.
اثرات زیست محیطی شامل دفع جریان زباله متمرکز و اثرات آبگیری و خروجی بر روی اکوسیستم های محلی است.
با وجود این اشکالات، انتظار می رود که استفاده از نمک زدایی در قرن بیست و یکم به طور گسترده افزایش یابد، در درجه اول به دو دلیل. تحقیق و توسعه ادامه خواهد داد تا نمک‌زدایی انرژی کمتری داشته باشد، از نظر مالی رقابتی‌تر و از نظر زیست‌محیطی بی‌خطرتر شود.
افزایش تقاضا: رشد جمعیت، توسعه اقتصادی و شهرنشینی منجر به افزایش سریع تقاضا برای تامین آب در مناطق ساحلی و سایر مناطق با دسترسی به آب های شور می شود.
نیازهای انرژی زیاد فرآیندهای نمک‌زدایی فعلی به انتشار گازهای گلخانه‌ای کمک می‌کند و می‌تواند تلاش‌های کاهش تغییرات آب و هوایی را متوقف کند.
موانع نمک زدایی آب دریا
اثرات جریان ضایعات متمرکز بر اکوسیستم ها و تأثیر ورودی آب دریا بر زندگی آبزیان.
نمک زدایی اگرچه با پیشرفت های تکنولوژیکی اخیر در حال بهبود است. اما به دلیل غلظت بالای نمک های ضایعاتی و آثار شیمیایی می تواند اثرات منفی بر محیط زیست داشته باشد .
روش‌های نمک‌زدایی نسبتاً گران هستند و به انرژی زیادی نیاز دارند. اگرچه امکانات فزاینده‌ای برای استفاده از انرژی‌های تجدیدپذیر مانند کوپلینگ نمک‌زدایی خورشیدی یا بادی وجود دارد.
کشورهای در حال توسعه که اغلب بیشترین نیاز به آب شیرین را دارند، ممکن است نتوانند از نمک‌زدایی استفاده کنند.زیرا بهترین فرصت‌ها برای اجرای آن در بخش‌های آب با مدیریت خوب با سیاست‌های آب شفاف است.
استفاده بهینه مستلزم آموزش، تعمیر و نگهداری منظم و دسترسی به قطعات یدکی است که می تواند یک عامل محدود کننده در جوامع دور و کوچکتر باشد.
تأثیرات زیست‌محیطی نمک‌زدایی باید با تأثیرات ناشی از گسترش استفاده از منابع آب شیرین (مانند کاهش آب‌های زیرزمینی، منحرف کردن جریان‌های آب سطحی) سنجیده شود .
اگرچه آب محصول RO تقریباً کاملاً خالص است، این امکان وجود دارد که برخی از ترکیبات احتمالی وارد آب محصول شوند. فرآیندهای قبل یا پس از درمان را می توان برای رسیدگی به چند ترکیبی که به خوبی توسط RO حذف نمی شوند (مثلاً بور) استفاده کرد.
مسائل کلیدی برای گسترش این فناوری ها شامل :
کاهش هزینه های تولید آب شیرین،
تثبیت عملکرد کارخانه
و ایجاد روش های آسان برای بهره برداری، نگهداری و مدیریت کارخانه است.
کاربرد تصفیه آب دریا در کشاورزی
مصرف آب در کشاورزی بسیار زیاد است. استفاده از آب های شیرین و آشامیدنی برای انجام این کار به شدت به منابع آب زیر زمینی آسیب وارد می کند.
در مناطقی که فاصله کمی با دریا دارند می توان با تصفیه آب های شور از آنها در کشاورزی و باغبانی استفاده نمود.
با استفاده از روش های متعددی که در طول متن به آنها اشاره شد، می توان آب دریا را به استانداردهای مورد نیاز برای مصرف در کشاورزی رساند و از این طریق از ورود سدیم به خاک جلوگیری خواهد شد. علاوه براین، آبیاری با آب بدون نمک و املاح منجر به تولید محصولات بهتر با کیفیت بیشتر خواهد شد.
کاربرد تصفیه آب شور در صنعت
از دیگر بخش هایی که  مصرف آب بالایی داشته و همچنین منجر به ورود آلاینده ها به پساب ها می شوند، کارخانجات می باشند. به همین دلیل استفاده از منابع آب های زیر زمینی در صنعت می تواند یک تهدید بزرگ برای کاهش آب های قابل شرب محسوب شود.
علاوه براین، استفاده از آب های شور منجر به ایجاد رسوب بسیار زیاد بر روی تجهیزات مختلف خواهد شد. این امرخطرات متعددی را به همراه دارند. با نمک زدایی مقدار مصرف آب های شیرین و آشامیدنی در محیط های صنعتی را می توان کاهش داد. همچنین از آسیب وارد شدن به تجهیزات آنها نیز جلوگیری به عمل می آید.
کاربرد تصفیه آب دریا در آب آشامیدنی
تنها یک تا دو درصد از کل آب موجود در کره زمین قابلیت استفاده به عنوان آب آشامیدنی و شرب را دارا می باشند. علاوه براین، استفاده از آب با املاح و نمک زیاد به شدت به سلامتی بدن آسیب وارد می کند.
برای غلبه بر این محدودیت در تصفیه خانه های بزرگ از روش های شیرین سازی آب های شور می توان استفاده نمود.
تماس با ما:
تماس باما
0 notes
clinicab · 18 days
Text
حذف آهن از آب
                 حذف آهن از آب
حذف آهن از آب چگونه است؟
آیا می دانستید که 5 درصد از پوسته زمین از آهن تشکیل شده است؟ علوم پایه ابتدایی آهن را به عنوان عامل رنگ زرد، قرمز و قهوه ای در سنگ ها و خاک شناسایی می کند. آهن مسئول رنگ قرمز در گلبول های خون است. از این رو آهن فلزی مهم در زندگی ماست. اما آیا آهن در آب مفید است؟ نه. آهن موجود در آب می‌تواند منجر به مشکلات جدی سلامتی، مانند اسهال، وبا، عفونت‌های مزمن کولیک و حتی ایمنی ضعیف شود. حتی مزه و بوی بدی هم دارد.پس باید برای حذف آهن از آب به دنبال راههایی بود.
چگونه وجود آهن در آب را تشخیص دهیم؟
اساساً دو شکل آهن در آب وجود دارد. یکی آهن آهنی و دیگری آهن فریک. آهن آهنی در آب حل می شود. آهن فریک شکل اکسید شده آهن است که به رنگ زرد، قهوه ای یا قرمز رسوب می کند و آب را به رنگ زرد یا قهوه ای تبدیل می کند. از طرف دیگر آهن آهنی روی رنگ آب تأثیر نمی گذارد. با این حال، طعم فلزی به آب می دهد.
به طور خلاصه، اگر آب به رنگ قهوه‌ای یا زرد و همراه با طعم ناخوشایند به نظر برسد، در آن صورت دارای آهن است. برای حذف آهن اضافی از آب و رهایی از مشکلات ذکر شده می توان از یک فیلتر حذف آهن مانند فیلتر حذف آهن KENT استفاده کرد.
آهن اضافی در آب چه اثرات نامطلوبی بر سلامت انسان دارد؟
وجود آهن اضافی در آب باعث ایجاد لکه در حمام و در نتیجه گرفتگی لوله ها می شود. اما جدی تر از آن وجود آهن در آب آشامیدنی است، این یک تهدید جدی برای سلامت انسان است. معمولاً مقدار آهن موجود در آب آشامیدنی 10 میلی گرم در لیتر است، اما حتی 0.3 میلی گرم در لیتر می تواند آب را به رنگ زرد یا قهوه ای تبدیل کند.
7روش حذف آهن از آب
در ادامه به راه های حذف آهن از آب می پردازیم. روش های مختلفی برای انجام کار وجود دارد. حذف آهن از آب به منبعی مانند چاه چاه، چاه، شهری و غیره و نوع آهن بستگی دارد.
کلرزنی
اکسیداسیون شیمیایی
فیلتراسیون کاتالیزوری
درمان فسفات
فیلترهای اکسید کننده
نرم کننده های آب
فیلتر حذف آهن
نحوه حذف آهن از آب چاه (راهنمای کامل)
آلودگی آهن در چاه های ایالات متحده بسیار رایج است و باعث ایجاد یک سری مشکلات، از آب قهوه ای و لکه های دستگاه گرفته تا طعم فلزی می شود.
هنگامی که آب غنی از آهن به درستی درمان نشود، می تواند به محل رشد باکتری ها تبدیل شود.متأسفانه، بسیاری از مردم سعی می کنند با استفاده از فیلترهای آب کربنی یا کارتریج آهن را جدا کنند که روی آب چاه مؤثر نیستند.
این به این دلیل است که انواع مختلفی از آلودگی آهن وجود دارد و بیشتر آهن قبل از فیلتر شدن باید اکسید شود.
برای اکسید شدن و حذف آهن از آب چاه، از سیستم فیلتر تزریقی استفاده کنید.
برای حذف موثر آهن از آب چاه، باید بدانید که با چه نوع آهنی سروکار دارید. سپس، باید سیستم فیلتراسیون مناسب را برای نیازهای خود انتخاب کنید.
چه نوع آهنی در آب چاه من وجود دارد؟
به طور کلی، چاه ها را می توان به سه نوع مختلف آهن آلوده کرد. یافتن یک نوع آهن در آب چاه به این معنی است که احتمال وجود سایر انواع آهن بیشتر است.
آلودگی آهن اغلب برای صاحبان خانه به شکل لکه شدن یا کدر شدن قابل مشاهده است، بنابراین ممکن است از قبل بدانید که با چه نوع آهنی سروکار دارید.
با این حال، دقیق ترین روش برای شناسایی آهن در آب آشامیدنی، انجام آزمایش آب چاه است.
1-آهن فریک (آهن قرمز)
آبی که کدر، قهوه ای یا نارنجی است احتمالا حاوی آهن فریک است. این نوع آهن حل نشده اغلب زنگ زدگی نامیده می شود و زمانی که فلز در معرض آب و هوا قرار می گیرد تشکیل می شود.
آهن حل نشده با آب های زیرزمینی مخلوط می شود تا تغییر رنگ و طعم فلزی ایجاد کند. اغلب می‌توانید قهوه‌ای شدن این آب را در قسمت‌هایی از لوله‌کشی‌تان که آب در آن جمع می‌شود، مانند بالای توالت، مشاهده کنید.
2-آهن محلول (آهن آب شفاف)
آهن آهنی نام علمی آهن محلول است که با دید قابل تشخیص نیست.
در حالی که ممکن است بو و طعم قابل توجهی را در سطوح بالا ایجاد کند، بزرگترین اثر آهن محلول لکه شدن به وسایل حمام، لوازم آشپزخانه و هر چیز دیگری است که مرتباً با منبع آب شما تماس پیدا می کند.
همانطور که آهن محلول در تماس با هوا قرار می گیرد، می تواند به آهن فریک تبدیل شود و به تغییر رنگ آب کمک کند.
3- آهن باکتریایی
هنگامی که آب چاه حاوی سطوح بالایی از آهن باشد، می تواند باکتری هایی را در خود جای دهد که از این فلز برای تولید انرژی خود استفاده می کنند.
با افزایش تعداد آنها، باکتری های آهن یک لایه لزج قرمز یا نارنجی تولید می کنند که می تواند به سرعت از سیستم لوله کشی سبقت بگیرد. این باعث ایجاد گرفتگی می شود که بر عملکرد دستگاه ها تأثیر می گذارد و رکود آب را تشویق می کند.
بنابراین، در حالی که باکتری‌های آهن به خودی خود خطری برای سلامتی ندارند، می‌توانند آسیب‌های گسترده‌ای ایجاد کنند.
چرا فیلتر کارتریج من روی آهن کار نمی کند؟
اکثریت قریب به اتفاق سیستم‌های تصفیه آب که در خانه‌ها در سراسر ایالات متحده یافت می‌شوند، حاوی نوعی فیلتر به نام کربن فعال دانه‌ای (GAC) هستند.
اگر در حال حاضر صاحب یک سیستم فیلتر آب هستید، احتمالاً از کربن فعال دانه ای استفاده می کند.
در حالی که این فیلترها طیف گسترده ای از آلاینده ها را پوشش می دهند و طعم و بوی آب آشامیدنی را تا حد زیادی بهبود می بخشند، کارهای خاصی وجود دارد که نمی توانند انجام دهند.
به عبارت ساده، فیلترهای GAC معمولی برای جذب آهن طراحی نشده اند.
ذرات آهن حل نشده به سرعت فیلترهای GAC را مسدود می کنند، در حالی که آهن محلول مستقیماً از آنها عبور می کند.
این به این دلیل است که فیلترهای GAC آلاینده ها را اکسید نمی کنند. اکسیداسیون فرآیندی است که برای تبدیل فلزات محلول مانند آهن به شکل نامحلول استفاده می شود که می تواند توسط یک محیط تصفیه حذف شود.
بدون مرحله اکسید کننده، هیچ فیلتر آبی نمی تواند آهن را به مقدار قابل توجهی حذف کند.
 فیلتر کارتریج رسوبی  چطور است؟
نوع دیگری از فیلتر کارتریج که مردم معمولاً هنگام تلاش برای مقابله با آلودگی آهن استفاده می کنند، فیلتر میکرون یا فیلتر رسوبی است.
این دستگاه ها با عبور آب از صفحه های توری ریز، ذرات ریز آهن یا زنگ را از منبع آب فیلتر می کنند.
اگر در حال حاضر از فیلتر رسوب برای رفع مشکلات آهن خود استفاده می کنید، احتمالاً متوجه شده اید که صفحه فیلتر قابل تعویض به سرعت نارنجی یا قهوه ای می شود زیرا آلاینده ها را جذب می کند.
فیلترهای رسوبی می توانند کار خوبی برای حذف آهن حل نشده از منبع آب انجام دهند. با این حال، هنگامی که بدون مرحله اکسیداسیون استفاده می شوند، نمی توانند آهن محلول را حذف کنند.
همانطور که این آهن حل شده در سیستم لوله کشی شما حرکت می کند، همچنان مشکلات آلودگی ایجاد می کند.
بنابراین، در حالی که فیلترهای رسوبی برای از بین بردن ذرات آهن حل نشده مفید هستند، زمانی که به تنهایی استفاده می شوند بسیار مؤثر نیستند.
فیلتر کارتریج KDF
فیلتر کارتریج KDF (Kinetic Degradation Fluxion) چطور است؟
فیلترهای KDF یک نوع فیلتر آب کارتریج خانگی کمتر رایج اما همچنان محبوب هستند. آنها با استفاده از ترکیبی از فلزات مانند مس و روی که به عنوان یک کاتالیزور در آب عمل می کنند، کار می کنند.
از آنجایی که فیلترهای KDF آلاینده ها را اکسید می کنند، می توانند هم آهن محلول و هم آهن حل نشده را از آب چاه حذف کنند.
با این حال، عملکرد و طول عمر آنها به طور معمول بسیار کمتر از سیستم های فیلتر تزریق است.
اگر فیلتر کارتریج KDF را انتخاب کنید که برای کنترل سطوح آهن در آب چاه شما رتبه بندی نشده باشد، پس از تصفیه آب، مقداری آهن در آب باقی می ماند.
این ممکن است از نظر کیفیت آب مشکلی نداشته باشد، اما حتی سطوح پایین آهن در آب می تواند منجر به رشد باکتری های آهن شود.
اگر آب چاه شما حاوی سطوح پایینی آهن است و به دنبال یک فیلتر کارتریج ارزان قیمت برای رفع مشکل هستید، این سیستم 3 مرحله ای KDF توصیه می کنیم.
سیستم های  تزریق کلر
بهترین راه برای حذف آهن از آب چاه استفاده از سیستم  تزریق شیمیایی است. این محصولات حاوی یک پمپ تغذیه خودکار هستند که مقادیر کمی از مواد شیمیایی ضدعفونی کننده (معمولاً کلر) را به منبع آب تزریق می کند.
افزودن کلر به آب یک فرآیند اکسیداسیون را آغاز می کند که آهن محلول را بیرون می کشد و آن را به شکل نامحلول تبدیل می کند. فیلترهای تزریق شیمیایی با نگه داشتن آب کلر در داخل مخزن، خطر رشد باکتری های آهن را نیز کاهش می دهند.
فیلترهای تزریقی پس از اکسید شدن، آب را از یک محیط فیلتر شنی سبز عبور می دهند که مقدار زیادی آهن نامحلول را حذف می کند. این آنها را در میان قوی ترین فیلترهای آهنی موجود قرار می دهد.
سیستم های  تزریق هوا
این دستگاه ها که به عنوان فیلترهای اکسید کننده هوا نیز شناخته می شوند، به روشی مشابه فیلترهای تزریق شیمیایی بالا عمل می کنند.
آنها با وارد کردن یک محفظه هوا به مخزن سیستم فیلتر، باعث می شوند که آهن آهنی به طور طبیعی بدون استفاده از مواد شیمیایی به شکل نامحلول اکسید شود. سپس آهن نامحلول را می توان از منبع تصفیه کرد.
ضد عفونی کلر (شوک کلرزنی)
اگر باکتری های آهن تنها نوع عمده آلودگی در چاه شما هستند�� می توانید با شستشوی دوره ای سیستم خود با یک ماده شیمیایی ضدعفونی کننده مانند کلر، آن را درمان کنید.
این روش که اغلب توسط متخصصان انجام می شود و به آن کلرزنی شوک می گویند، شامل وارد کردن مقدار زیادی کلر در سراسر سیستم چاه برای حذف باکتری ها می شود.
اگر کلرزنی به بخشی منظم از روال تصفیه آب تبدیل شود، صاحبان خانه اغلب نصب فیلتر کربن فعال را انتخاب می کنند که به کاهش طعم یا بوی شیمیایی باقیمانده کمک می کند.
کلرزنی برای باکتری های آهن موثر است، اما به ندرت راه حلی دائمی است. دوره بدون باکتری پس از کلرزنی بین چند ماه تا یک سال طول می کشد.
هر زمان که آب تغییر رنگ داد، یک نکته قابل توجه احتمال خوردگی لوله ها و لوله کشی ها است.
حل کردن آب چاه آلوده به آهن راه حلی برای لوله کشی زنگ زده نیست، زیرا منبع آب پس از عبور آب از هر مرحله فیلتراسیون، ذرات زنگ را می گیرد.
اگر با آب زنگ‌زده مواجه هستید و در خانه‌ای قدیمی زندگی می‌کنید یا نمی‌توانید تاریخ دقیق لوله‌کشی خود را تعیین کنید، ارزش دارد که سیستم خود را توسط یک متخصص بررسی کنید - به خصوص اگر روش‌های فیلتراسیون بالا کیفیت آب شما را به میزان قابل توجهی بهبود نبخشد.
تماس با ما:
تماس باما
0 notes
clinicab · 18 days
Text
نمونه برداری از آب
Tumblr media
نمونه برداری از آب
به دست آوردن قسمت کوچکی از آب  که نمایان‏گر خصوصیات واقعی منبع اصلی باشد نمونه برداری از آب نام دارد.
تئوری و روش نمونه گیری
دو نوع استراتژی نمونه برداری از آب در مورد بازه زمانی جمع آوری نمونه ها وجود دارد:(1) نمونه های گسسته(2) نمونه های مرکب
1.نمونه گسسته
یک نمونه جمع آوری شده در یک ظرف جداگانه است. نمونه معرف شیمی آب فقط در زمان و مکانی که نمونه برداری شده است  می باشد. دوره زمانی به طور کلی کمتر از 15 دقیقه تعریف می شود. بنابراین، نمونه های گسسته زمانی مناسب هستند که ترکیب نمونه، وابسته به زمان نباشد.
2.نمونه مرکب
شامل مجموعه ای از نمونه های کوچکتر است که در یک زمان از پیش تعیین شده یا پس از جریان از پیش تعیین شده جمع آوری شده و در یک ظرف مخلوط می شوند.
آزمایش‌های بررسی کیفیت آب عبارتند از:
تست دما
در نمونه برداری از آب آزمایش دما به تعیین سرعت واکنش های بیوشیمیایی در یک محیط آبی و در واقع امکان وقوع آنها کمک می کند. اگر دمای آب بیش از حد بالا باشد، این می تواند توانایی آب در نگهداری اکسیژن را محدود کرده و ظرفیت موجودات زنده را برای مقاومت در برابر آلاینده های خاص کاهش دهد.
تست pH
اسیدیته آب را اندازه گیری می کند. بیشتر موجودات آبزی فقط در محدوده pH 6 تا 8 قادر به زنده ماندن هستند.
تست کلرید
کلرید معمولا در آب شیرین و شور وجود دارد. با این حال، سطوح آن می تواند در نتیجه حل شدن مواد معدنی و آلودگی صنعتی تشدید شود.
آزمایش شوری
مجموع تمام نمک های غیر کربناتی محلول در آب را اندازه گیری می کند. اندازه‌گیری شوری آب‌های زیرزمینی نشان می‌دهد که در صورت افزایش سطح آب، خاک سطحی شما چقدر شور می‌شود.
تست اکسیژن محلول
مقدار اکسیژن محلول در آب را اندازه گیری می کند. بدون این، آبزیان قادر به انجام تنفس سلولی نیستند و بنابراین یک شاخص کلیدی سلامت آب است.
تست کدورت
میزان ذرات  معلق در آب یا به عبارت ساده تر، شفافیت آب را اندازه گیری می کند. در صورت وجود سطوح بالای کدورت، فتوسنتز تحت تأثیر قرار می گیرد زیرا نور قادر به نفوذ نیست و دمای آب افزایش می یابد.
نیترات و فسفات
وجود این مواد مغذی ضروری شاخص خوبی از زندگی قوی گیاه است. با این حال، افزودن نیترات‌ها و فسفات‌های مصنوعی از طریق شوینده‌ها، کودها یا فاضلاب می‌تواند مضر باشد و منجر به اوتروفیکاسیون شود، معمولاً به شکل شکوفه‌های جلبکی ناخواسته.
آفت کش ها
ما اندازه‌گیری می‌کنیم که آیا آفت‌کشی وجود دارد یا خیر و سطح غلظت آن‌ها را اندازه‌گیری می‌کنیم.
ردوکس
اندازه گیری پتانسیل کاهش اکسیداسیون یک محلول که فعالیت الکترون را نشان می دهد و رشد میکروارگانیسم ها به شدت به این سطوح وابسته است.
رسانایی الکتریکی
Tumblr media
فلزات
آزمایشی که نشان دهنده وجود مجموعه ای از فلزات است که به طور طبیعی در آب وجود ندارند. فلزات سنگین (آلومینیوم، آنتیموان، آرسنیک، بریلیم، بیسموت، مس، کادمیوم، سرب، جیوه، نیکل، اورانیوم، قلع، وانادیوم و روی) می‌توانند از طریق فرآیندهای طبیعی یا فعالیت‌های انسانی مانند استخراج، فرآوری مواد معدنی، به آب‌ها راه پیدا کنند. مواد معدنی، استفاده از فلزات به عنوان ظروف و حمل و نقل از طریق خطوط لوله فلزی. فلزات سنگین به کلیه ها، کبد، سیستم عصبی و ساختار استخوان آسیب می رساند.
مسمومیت با سرب
مسمومیت با سرب در انسان می تواند باعث ایجاد مشکلاتی در سنتز هموگلوبین، کلیه ها، دستگاه گوارش، مفاصل و سیستم تولید مثل و آسیب حاد یا مزمن به سیستم عصبی شود. سرب همچنین می تواند باعث پوکی استخوان و ضعیف شدن استخوان ها شود زیرا شروع به جایگزینی کلسیم در استخوان ها می کند.
مواجهه طولانی مدت با کادمیوم
مواجهه طولانی مدت با کادمیوم منجر به اختلال عملکرد کلیه می شود و قرار گرفتن در معرض زیاد حداقل ممکن است در معرض سرطان ریه و استئودیستروفی باشد.
نیکل دارای مکانیسم های گزارش شده متعددی از سمیت است که از جمله آنها می توان به چرخه ردوکس و مهار ترمیم DNA و همچنین نشان دادن اثرات آلرژیک اشاره کرد.
قرار گرفتن در معرض جیوه
جیوه می تواند منجر به لرزش، التهاب لثه و سایر تغییرات روانی همراه با جذب خود به خود و ناهنجاری های مادرزادی شود. مونو متیل جیوه باعث آسیب به مغز و سیستم عصبی مرکزی، ناهنجاری های مادرزادی و تغییرات رشد در کودکان خردسال می شود. وانادیم اثرات سمی بر روی کبد، کلیه، سیستم عصبی و قلبی عروقی و اندام های خون ساز دارد.
تست های دیگر
هیدروکربن های نفتی (TRH) ،هیدروکربن های معطر تک حلقه ای (BTEX) ، هیدروکربن های چند معطر (PAH ها، از جمله بنزو (a) پیرن)
وضعیت آب ممکن است به طور مکرر تغییر کند در نتیجه:
خاک از طریق حوادثی مانند فرسایش، پاکسازی زمین و چرای بی رویه وارد آب می شود.
ورود مواد شیمیایی از طریق کودها، آفت کش ها و زالو زدنی به آب
آلودگی های ورودی به آب از زباله های کارخانه ها، سیستم های فاضلاب، معادن و ایستگاه های خدمات
دفع زباله (چه در مقیاس کوچک و چه از محل دفن زباله)
آزمایش منظم آب می تواند در مدت زمان طولانی برای نظارت بر تغییراتی که در کیفیت آب رخ می دهد مفید باشد. اگر این اتفاق افتاد، ضروری است که نظارت در فواصل زمانی ثابت از یک نقطه انجام شود. با این حال، انجام آزمایش آب در پاسخ به یک رویداد غیرمنتظره مانند نشت مواد شیمیایی نیز می تواند ایده خوبی باشد.
تماس با ما:
تماس باما
0 notes
clinicab · 18 days
Text
رسوب غشایی
رسوب غشایی
رسوب غشایی چیست و چگونه می توان از آن جلوگیری کرد؟
سیستم های فیلتراسیون غشایی برای کاربردهای مختلف در بسیاری از صنایع و بخش ها استفاده می شود. اگر یک سیستم فیلتراسیون غشایی را برای تاسیسات خود در نظر می گیرید، ممکن است بپرسید "رسوب غشایی چیست و چگونه می توان از آن جلوگیری کرد؟"
در حالی که واحدهای فیلتر غشایی در مقایسه با سایر فن آوری های تصفیه و جداسازی نیاز به تعمیر و نگهداری نسبتا کمتری دارند، اغلب در معرض رسوب گیری هستند. خوشبختانه، استراتژی های زیادی برای جلوگیری از رسوب غشاء و حفظ کارآمدی سیستم فیلتراسیون وجود دارد.
چه چیزی باعث رسوب غشاء می شود؟
سیستم‌های فیلتراسیون غشایی، از جمله 1-میکروفیلتراسیون (MF)، 2-اولترافیلتراسیون (UF)، 3-اسمز معکوس (RO) و4- نانوفیلتراسیون (NF)، همگی در این امر سهیم هستند که از غشاهای نیمه تراوا برای جذب ذرات مایعات استفاده می‌کنند.
رسوب غشایی زمانی اتفاق می‌افتد که آلاینده‌ها روی سطح یک غشای فیلتراسیون رسوب می‌کنند و جریان مایعات را از طریق منافذ غشا محدود می‌کنند.
چه عواملی می توانند در ایجاد رسوب نقش داشته باشد؟
 وجود ذرات بیولوژیکی،
کلوئیدی ویا آلی اضافی در منبع آب.
انتخاب نامناسب مواد غشایی؛
شرایط نامناسب فرآیند مانند سرعت جریان، دما و فشار.
Tumblr media
چگونه بفهمیم که تاسیسات ما مشکل رسوب غشایی دارد؟
مشکلات ناشی از رسوب غشا می تواند به تدریج یا ناگهانی ظاهر شود. در اوایل، تأسیسات اغلب علائمی مانند افزایش هزینه های انرژی و کاهش شار غشا را مشاهده می کنند. از آنجایی که رسوب ها به تجمع در سطح غشا ادامه می دهند، فشار بیشتری برای عبور آب از آن لازم است که در نهایت می تواند منجر به آسیب های جبران ناپذیری به غشا و سایر اجزای سیستم شود.
چگونه می توانیم از رسوب غشاء جلوگیری کنیم؟
گرفتگی غشاء گاهی اوقات برگشت پذیر است - اما نه همیشه. به همین دلیل است که بهتر است اقدامات پیشگیرانه برای جلوگیری یا به حداقل رساندن رسوب غشاء در وهله اول اجرا شود. در زیر برخی از اقدامات پیشگیرانه رایج برای جلوگیری از رسوب غشاء را بیان کرده ایم
نظافت برنامه ریزی شده
یک رژیم تمیز کردن سیستماتیک می تواند به جلوگیری از تجمع رسوب روی غشاء کمک کند. چرخه های تمیز کردن باید به صورت ماهانه یا در فواصل منظم دیگر برنامه ریزی شود تا بیشترین فایده را داشته باشد. استراتژی‌های نگهداری بسته به طراحی سیستم فیلتراسیون غشایی و انواع آلاینده‌های درگیر می‌تواند متفاوت باشد و می‌تواند از یک یا چند روش تمیز کردن استفاده کند، مانند:
-تمیز کردن مکانیکی
شامل استفاده از نیروی فیزیکی برای از بین بردن آلاینده ها از غشا و خارج کردن آنها از سیستم است. روش‌های معمولی شامل لرزش، و همچنین شستشوی عقب یا جلو، که در آن آب یا محلول تمیزکننده با سرعت یا فشار بالاتری نسبت به چرخه خدمات معمولی از دستگاه عبور می‌کند، و در نتیجه آشفتگی ایجاد می‌کند که رسوب‌ها را از غشاء خارج می‌کند. در یک فرآیند مرتبط که به عنوان شستشوی هوا شناخته می شود، هوا به محلول شستشوی معکوس / شستشوی جلو اضافه می شود تا تلاطم بیشتر شود.
-تمیز کردن شیمیایی
پیش تصفیه
غشاهای RO/NF دارای منافذ کوچک تری نسبت به غشاهای MF/UF هستند، بنابراین، برای جلوگیری از رسوب غشاء یا مسائل دیگر، احتمالاً به نوعی پیش تصفیه نیاز دارند. جریان‌های با غلظت‌های بالای آلاینده‌ها نیز ممکن است به پیش تصفیه قبل از واحدهای فیلتراسیون غشایی نیاز داشته باشند تا خطر رسوب غشایی به حداقل برسد. گزینه های پیش تصفیه می تواند شامل انعقاد در صورت وجود ذرات کلوئیدی و همچنین ته نشینی گرانشی (رسوب)، لخته سازی و فیل��راسیون رسانه ای برای حذف ذرات بزرگتر یا منعقد شده باشد. انواع دیگر پیش تصفیه می تواند شامل تنظیم شیمیایی pH و تبادل یونی برای جلوگیری از جذب یا رسوب مواد رسوب بر روی غشا باشد.
طراحی سیستم
جلوگیری از رسوب غشاء به بهترین وجه با برنامه ریزی و طراحی خوب انجام می شود. متغیرهای زیادی وجود دارند که در عملکرد صحیح سیستم برای یک سیستم فیلتراسیون غشایی نقش دارند . هر یک از آنها باید هنگام تعویض یک ممبران یا نصب یک سیستم جدید در نظر گرفته شود. این شامل:
-مواد غشایی
غشاهای فیلتراسیون ممکن است از طیف گسترده ای از پلیمرهای مصنوعی، سرامیک و مواد فلزی ساخته شوند. ویژگی‌های ماده غشاء، مانند بار یونی سطحی، آبگریزی و محدوده تحمل pH، تعیین می‌کند که آیا غشا در برابر انواع خاصی از رسوب‌گیری مقاوم خواهد بود و تا چه حد در شرایط فرآیند و رژیم نگهداری لازم مقاومت می‌کند.
-اندازه منافذ غشا
اندازه منافذ عامل کلیدی برای حصول اطمینان از حذف کارآمد آلاینده های هدف توسط یک واحد فیلتراسیون غشایی است. علاوه بر این، انتخاب اندازه مناسب منافذ غشاء می‌تواند با بهینه‌سازی شار نفوذی در پرتو عوامل دیگر، مانند کیفیت آب خوراک، دما و غلظت نمک، به جلوگیری از رسوب کمک کند.
-شرایط عملیاتی
رسوب غشایی می تواند توسط محدوده های خاصی از دما، pH، فشار غشایی و سرعت جریان تشدید شود. یک سیستم خوب طراحی شده این متغیرها را متعادل می کند تا اطمینان حاصل شود که رسوبات روی سطح غشاء جمع نمی شوند.
Tumblr media
تماس با ما:
تماس باما
0 notes
clinicab · 18 days
Text
منعقد کننده در تصفیه فاضلاب
منعقد کننده در تصفیه فاضلاب
Tumblr media
هدف از انعقاد در تصفیه فاضلاب چیست؟
منعقد کننده ها در تصفیه فاضلاب برای افزایش جداسازی مایع و جامد فرموله شده اند.
منعقد کننده ها در تصفیه فاضلاب نقش حیاتی در فرآیند تصفیه فاضلاب ایفا می کند . آنها امکان حذف مواد جامد و آبگیری، شفاف سازی آب، نرم شدن آهک و غلیظ شدن لجن را فراهم می کند. با کمک سایر مواد شیمیایی تخصصی و روش‌های فیلتراسیون مکانیکی، منعقد کننده‌ها به شرکت‌ها کمک می‌کنند تا یک منبع ثابت و قابل اعتماد از آب تمیز را برای پشتیبانی از فرآیندهای صنعتی خود حفظ کنند.
انعقاد در تصفیه فاضلاب از زمان‌های قدیم برای شفاف‌سازی آب استفاده می‌شده است . در اوایل سال 2000 قبل از میلاد، زمانی که مصریان از بادام برای شفاف‌سازی آب رودخانه استفاده می‌کردند. همچنین شواهدی وجود دارد که نشان می دهد رومی ها در حدود سال 77 بعد از میلاد از زاج به عنوان منعقد کننده استفاده می کردند.
امروزه، انعقاد و لخته سازی هنوز اجزای ضروری فرآیندهای تصفیه هستند. به عنوان مثال: برای کاهش کدورت آب عملیات تصفیه فاضلاب همچنین برای حذف شیمیایی فسفر و کاهش مواد جامد معلق نیاز به انعقاد دارد.
انعقاد در تصفیه فاضلاب چیست؟
انعقاد یک فرآیند شیمیایی تا حدودی ساده است که شامل کنار هم قرار دادن مواد نامحلول با دستکاری بار ذرات، با افزودن نمک های آهن یا آلومینیوم، مانند سولفات آلومینیوم یا سولفات آهن، به یک جریان فاضلاب است. هدف اصلی استفاده از یک منعقد کننده علاوه بر حذف ذرات ریز مختلف از سوسپانسیون این است که این فرآیند باعث کدورت کمتر آب، یعنی آب شفاف تر می شود.
با بار مثبت منعقد کننده ها، ذرات باردار منفی در آب خنثی می شوند. این باعث می شود که مواد جامد معلق در آب به هم متصل شوند و به لخته های بزرگتری تبدیل شوند. این لخته های بزرگتر شروع به نشستن در پایه منبع آب می کنند. هرچه اندازه ذرات بزرگتر باشد، لخته سریعتر ته نشین می شود.
انعقاد به حذف تعدادی از آلاینده های مختلف که باعث کثیف یا سمی شدن آب می شوند کمک می کند، از جمله:
ترکیبات آلی و برخی مواد آلی محلول، که معمولاً به عنوان ماده آلی طبیعی (NOM) یا کربن آلی محلول (DOC) نامیده می شود.
رسوبات معدنی معلق مانند آهن و برخی فلزات
برخی از ویروس ها و باکتری ها
از طریق انعقاد، منابع آب صنعتی برای فیلتراسیون مکانیکی آسان در حالت شیمیایی عالی قرار می گیرند. هنگامی که لخته‌ها در پایین زلال‌کننده شما قرار گرفتند. تجهیزاتی مانند فیلتر پرس می‌توانند آن توده‌های بزرگ‌تر ذرات انباشته شده را گرفته و حذف کنند و آب تمیز را به سیستم شما برگردانند.
هنگامی که با هم استفاده می شود، منعقد کننده ها، زلال کننده ها و فیلتر پرس ها حداکثر بازیابی آب را بیش از 95 درصد ارائه می دهند. با آب بسیار کمی که در واقع با مواد جامد تخلیه می شود، می توانید یک فرآیند تقریباً حلقه بسته ایجاد کنید.
چه مواد منعقد کننده در تصفیه آب استفاده می شود؟
برای استفاده از انعقاد در تصفیه آب، باید از منعقد کننده ها برای شروع شیمیایی فرآیند استفاده کنید. این مواد شیمیایی ویژه باید به گونه ای فرموله شوند که بر اساس آنالیز ذرات جامدات محلول/معلق شما، کاربرد کیفیت آب خاص شما را برآورده کند.
بزرگترین عامل در انتخاب منعقد کننده، انتخاب بین منعقد کننده های آلی و معدنی است.
منعقد کننده های آلی
منعقد کننده های آلی برای جداسازی جامد از مایع بهترین استفاده را دارند. آنها همچنین گزینه های خوبی برای استفاده در هنگام تلاش برای کاهش تولید لجن هستند. این منعقد کننده‌ها از آنجایی که طبیعت ارگانیک دارند، مزایای اضافی کار در دوزهای پایین‌تر را ارائه می‌کنند و هیچ تاثیری بر pH آب شما ندارند.
منعقد کننده های آلی معمولاً بر اساس فرمول های زیر هستند:
پلی آمین ها و پلی دادمک ها : این منعقد کننده های کاتیونی تنها با خنثی سازی بار عمل می کنند و پرمصرف ترین منعقد کننده های آلی هستند. پلی آمین ها و PolyDADMAC ها بار منفی کلوئیدها را در آب خنثی می کنند. و یک توده اسفنجی به نام "میکروفلوک" را تشکیل می دهند. از آنجایی که آنها فقط از طریق خنثی سازی بار منعقد می شوند.  هیچ مزیتی در رابطه با مکانیسم Sweep-Floc ندارند (که بعداً با منعقد کننده های معدنی توضیح داده شد).
ملامین فرمالدئیدها و تانن ها : این منعقد کننده های طبیعی تا حدودی مشابه منعقد کننده های معدنی عمل می کنند. زیرا هم مواد کلوئیدی را در آب منعقد می کنند و هم در لخته های رسوب شده خود نقش دارند. این رسوب لخته می تواند مواد آلی مانند روغن و گریس را جذب کند در حالی که ذرات ناخواسته را هم در آب منعقد می کند.  این منعقد کننده ها برای عملیاتی که لجن خطرناک تولید می کنند، مانند آنچه در پالایشگاه های نفت یافت می شود، عالی هستند.
Tumblr media
مزایای اصلی منعقد کننده های آلی عبارتند از:
دوز کمتر، حجم کمتر لجن تولیدی
عدم تاثیر بر pH
منعقد کننده معدنی
منعقد کننده های غیر آلی معمولاً ارزان تر از همتایان آلی خود هستند و آنها را به یک راه حل مقرون به صرفه برای طیف گسترده ای از کاربردهای تصفیه آب تبدیل می کند. آنها به ویژه هنگامی که روی آب خام با کدورت کم استفاده می شوند مؤثر هستند.
Tumblr media
انواع اصلی منعقد کننده های معدنی عبارتند از:
سولفات آلومینیوم (آلوم) - به عنوان یکی از رایج ترین مواد شیمیایی تصفیه آب که در فرآیندهای صنعتی استفاده می شود، زاج برای بسیاری از سیستم ها به عنوان منعقد کننده انتخاب می شود.
کلرید آلومینیوم - این منعقد کننده مانند زاج کار می کند، اما گران تر، خطرناک تر و خورنده تر است. به این ترتیب، معمولاً تنها در فرآیندهایی که نمی‌توان از آلوم استفاده کرد، به عنوان گزینه دوم انتخاب می‌شود. پلی‌آلومینیوم کلرید (PAC) و کلروهیدرات آلومینیوم (ACH) - این منعقد‌کننده‌های معدنی بهترین کاربرد را برای تامین آب اولیه دارند.
سولفات آهن و سولفات آهن  - در حالی که سولفات آهن بیشتر مورد استفاده قرار می گیرد، هر دو منعقد کننده آهن مشابه منعقد کننده های آلومینیوم عمل می کنند. سولفات آهن معمولاً برای کاربردهایی که به یک عامل احیاء کننده نیاز دارید یا یون های آهن محلول اضافی مورد نیاز است، انتخاب خوبی است.
کلرید آهن  - از آنجایی که به عنوان یک ماده زائد از عملیات فولادسازی تولید می شود، کلرید آهن کم هزینه ترین منعقد کننده معدنی است. با این حال، تنها در تاسیساتی استفاده می شود که می تواند شهرت آن را به عنوان خورنده ترین و خطرناک ترین منعقد کننده معدنی کنترل کند.
هنگامی که منعقد کننده مناسب را دارید، این مواد شیمیایی را به آب کثیف خود اضافه کرده و به سرعت مخلوط می کنید. به این ترتیب، ماده منعقد کننده به سرعت و به راحتی در سراسر آب گردش می کند.
Tumblr media
تماس با ما:
تماس باما
0 notes
clinicab · 18 days
Text
کربن فعال چیست؟
کربن فعال چیست؟
کربن فعال یا زغال فعال عنصر متخلخلی است که ترکیبات عمدتاً آلی موجود در گاز یا مایع را به دام می اندازد. این کار را با چنان اثربخشی انجام می دهد که پرکاربردترین عامل تصفیه کننده توسط انسان است.
ترکیبات آلی از متابولیسم موجودات زنده به دست می آیند و ساختار اصلی آنها از زنجیره ای از اتم های کربن و هیدروژن تشکیل شده است. از جمله تمام مشتقات دنیای نباتی و جانوری از جمله روغن و ترکیبات حاصل از آن است.
خاصیت یک جامد برای چسبیدن یک مولکول در حال جریان به دیواره های خود را "جذب" می گویند. جامد را "جاذب" و مولکول "جذب" نامیده می شود.
پس از فیلتراسیون که برای حذف جامدات موجود در یک سیال در نظر گرفته شده است - هیچ فرآیند خالص سازی با کاربردهای بیشتر از کربن فعال وجود ندارد.
کاربرد کربن فعال چیست؟
تصفیه آب
کربن فعال آفت‌کش‌ها، چربی‌ها، روغن‌ها، مواد شوینده، محصولات جانبی ضدعفونی، سموم، ترکیبات تولیدکننده رنگ، ترکیبات تولید شده از تجزیه جلبک‌ها، سبزیجات یا متابولیسم حیوانات را حفظ می‌کند.
بو زدایی و تصفیه هوا
به عنوان مثال در ماسک‌های کارتریجی، سیستم‌های گردش هوا در فضاهای عمومی، دریچه‌های زه��شی و تصفیه‌خانه‌های آب، غرفه‌های کاربرد رنگ، فضای ذخیره‌سازی کلاه یا استفاده از حلال‌های آلی.
درمان افراد مبتلا به مسمومیت حاد
کربن فعال یک "پادزهر جهانی" در نظر گرفته می شود و در اورژانس ها و بیمارستان ها استفاده می شود.
تصفیه شکر
زغال سنگ پروتئین هایی را حفظ می کند که به آب نیشکر رنگ می دهند. هدف اصلی این فرآیند جلوگیری از تخمیر و فاسد شدن شکر است.
حذف رنگ روغن گیاهی
رنگ را از روغن نارگیل، گلوکز ذرت و سایر مایعات مورد استفاده در صنایع غذایی پاک می کند.
رفع بو و حذف رنگ تقطیر الکلی
رنگ و بو را از شراب های انگور پاک می کند و عرقیات از منابع دیگر را از بین می برد.
بازیابی طلا
طلایی که با فرآیند شناورسازی از مواد معدنی جدا نمی شود، در سیانید سدیم حل شده و به کربن فعال جذب می شود.
کربن فعال چگونه کار می کند و چه فوایدی دارد؟
کربن فعال یک محیط جاذب است، وظیفه آن جذب مولکول های آلی در ریز منافذ آن است. با استفاده از فرآیندهای حرارتی یا شیمیایی برای افزایش ظرفیت جذب آن فعال می شود.
توضیح گرافیکی ساده در مورد نحوه عملکرد کربن فعال را در زیر مشاهده می کنید.
از سوی دیگر، کربن فعال جاذب نیست را در تصاویر زیر مشاهده می کنید.
چه چیزی به کربن فعال خاصیت جذب، عمدتاً مولکول های آلی می دهد؟
هر ذره کربنی قابلیت جذب دارد. به همین دلیل است که برخی افراد برای از بین بردن بوها، کربن را در یخچال قرار می دهند. اگر کربن را در یک ظرف آب قرار دهید، همین امر صادق است: رنگ، طعم و بو را از بین می برد. یا در حومه شهر، مردم تورتیلا را می سوزانند و برای رفع مشکلات گوارشی (مانند عفونت های خفیف، سوء هاضمه یا نفخ آن) می خورند.
فعال کردن کربن شامل متخلخل ساختن آن برای افزایش ظرفیت جذب آن است. یک گرم کربن دارای مساحتی در حدود 50 متر مربع است. با فرآیند فعال سازی به 600 یا 800 متر مربع می رسد. یعنی بین 12 تا 16 برابر افزایش می یابد.
اتم های کربن
اتم‌های کربنی که جامدی را تشکیل می‌دهند که ما آن را «کربن» می‌نامیم، توسط پیوندهای کووالانسی به یکدیگر متصل می‌شوند. هر اتم یک الکترون با چهار اتم کربن دیگر به اشتراک می گذارد (به یاد داشته باشید که در کران های یونی، الکترونگاتیوترین اتم یک یا چند الکترون را از دیگری می دزدد).
اتم هایی که روی سطح نیستند، چهار پیوند خود را در همه جهات توزیع می کنند. اما اتم های سطحی، اگرچه به چهار اتم دیگر متصل هستند، اما در فضای کمتری مجبور به انجام این کار می شوند و عدم تعادل نیروها در آنها باقی می ماند. این عدم تعادل همان چیزی است که آنها را با ،به دام انداختن مولکولی از مایعی که کربن را احاطه کرده است، سوق می دهد.
نیروی لندن
نیرویی که اتم کربن سطح دیگری را به دام می اندازد، "نیروی لندن" نامیده می شود که یکی از هفت نوع "نیروهای وان در والس" است. این یک پیوند فیزیکوشیمیایی در نظر گرفته می‌شود، به اندازه‌ای قوی که بتواند جذب‌کننده را حفظ کند، اما نه آنقدر قوی که به عنوان یک پیوند شیمیایی برگشت‌ناپذیر در نظر گرفته شود که ساختار مولکولی جدیدی را تشکیل می‌دهد. بنابراین، جذب برگشت پذیر است و کربن فعال می تواند دوباره برای استفاده فعال شود.
همانطور که گفتیم، مولکول هایی که کربن جذب می کند تمایل به پیوند کووالانسی دارند و پیوند آتها یونی نیست، زیرا دومی سعی می کند الکترون ها را بدزدد یا به اتم های کربن اهدا کند. پیوندهای بین اتم های کربن و هیدروژن کووالانسی هستند و به همین دلیل است که کربن جاذب خوبی برای مولکول های آلی است.
همه مولکول های آلی تمایل به کووالانسی ندارند. آنها معمولاً حاوی اکسیژن، گوگرد و سایر اتمهای الکترونگاتیوی بالا هستند که به بخشی از مولکول که آنها را در بر می گیرد تمایل یونی می دهد. از سوی دیگر، همه مولکول های معدنی تمایل به یونی ندارند و تمایل کووالانسی دارند. در مورد دی سیانید طلا که کربن فعال را به بخشی ضروری از فرآیند استخراج این فلز گرانبها تبدیل می کند، چنین است.
از کدام مواد خام می توان کربن فعال به دست آورد؟
در تئوری، هر ذره کربنی می تواند فعال شود. با این حال، اگر کربن بسیار منظم باشد (مانند الماس یا گرافیت)، حذف برخی اتم‌های کربن برای ایجاد منافذ دشوار است.
یکی از راه‌های طبقه‌بندی کربن‌ها بر اساس ترتیب اتم‌های کربن آن‌ها است. هرچه سفارش کمتری داشته باشد، سختی کربن کمتر است و به راحتی می توان آن را فعال کرد.
پوسته نارگیل و زغال چوب
متداول‌ترین مواد خام مورد استفاده برای تولید کربن فعال عبارتند از: چوب‌های نرم (مانند کاج)، کربن‌های معدنی زغال سنگ (زغال‌سنگ، قیر و آنتراسیت) و پوسته‌ها یا استخوان‌های گیاهی (پوسته نارگیل، چاله‌های زیتون یا هلو، پوست گردو).
کربن‌های فعال ساخته شده از چوب‌های نرم، منافذ با قطر بزرگ را تشکیل می‌دهند و برای رنگ‌دهی مایعات مناسب هستند.
زغال سنگ معدنی
آنهایی که از زغال سنگ ساخته می شوند، تمایل دارند طیف وسیعی از منافذ را تشکیل دهند. آنها معمولاً برای کاربردهایی که ترکیباتی که باید حفظ شوند دارای اندازه های مولکولی مختلف هستند مناسب تر هستند.
آنهایی که از پوسته یا استخوان سخت به وجود می آیند، منافذ کوچکی را تشکیل می دهند و در تصفیه گازها یا در تصفیه آب خروجی از چاه ها به کار می روند.
شکل فیزیکی کربن فعال چیست؟
کربن را می توان به صورت پودر، گرانول یا گلوله های استوانه ای تولید کرد.
کربن پودری فقط در تصفیه مایعات استفاده می شود. زغال سنگ در یک مخزن با هم زدن ریز می شود و سپس با استفاده از یک فیلتر مناسب برای حفظ ذرات کوچک (مانند فیلتر پرس) از مایع جدا می شود.
در مورد زغال سنگ دانه ای در محدوده های ذرات مختلفی تولید می شود که بر اساس اندازه ذرات یا عدد مش مشخص می شود. به عنوان مثال، مش 4، مشکی است که در هر اینچ خطی چهار سوراخ دارد. آنها هم در تصفیه مایعات و هم در گازها کاربرد دارند.
گلوله ها معمولاً در تصفیه گاز استفاده می شوند، زیرا شکل استوانه ای آنها افت فشار کمتری ایجاد می کند.
اگر کربن یا گلوله دانه ای مورد نظر باشد وماده خام به اندازه کافی سخت نباشد، می توان آن را با استفاده یک ماده اتصال دهنده که به آن قوام می دهد تقویت کرد تا از شکستن آن هنگام عبور سیال جلوگیری کند.
کربن چگونه فعال می شود؟
فرایند حرارتی
کربن را می توان با فرآیندهای حرارتی یا شیمیایی فعال کرد. فرآیندهای حرارتی شامل تحریک اکسیداسیون جزئی کربن، برای رسیدن به تشکیل منافذ، اما اجتناب از گاز شدن و از دست دادن کربن بیشتر از حد لازم است. این در دماهای بین 600 تا 1100 درجه سانتیگراد (1112 درجه فارنهایت و 2012 درجه فارنهایت) و در اتمسفر کنترل شده (که با تزریق مقدار مناسبی از بخار آب یا نیتروژن حاصل می شود) رخ می دهد.
فرایند شیمیایی
قبل از کربن شدن فرآیندهای شیمیایی از مواد خام شروع می شود. این معرف ها عوامل کم آب کننده (مانند اسید فسفریک) هستند که پیوندهایی را که زنجیره های سلولزی را به یکدیگر متصل می کنند، می شکنند. پس از این مرحله، مواد در دمای نسبتاً پایین (حدود 550 درجه سانتیگراد یا 1022 درجه فارنهایت) کربنیزه می شوند و سپس برای حذف بقایای معرف و سایر محصولات جانبی شسته می شوند.
کوره هایی که در آنها کربن به صورت حرارتی فعال می شود یا کربنی که قبلاً با مواد شیمیایی کربنیز است، می توانند دوار یا عمودی (مرحله ای) باشند.
ظرفیت جذب کربن فعال چقدر است؟
ظرفیت یک کربن فعال برای حفظ یک ماده معین نه تنها با مساحت سطح آن مشخص می‌شود، بلکه با نسبت منافذی که اندازه مناسبی دارند نیز مشخص می‌شود، یعنی یک کربن مناسب قطری بین یک تا پنج برابر مولکول مورد نظر دارد.
زغال فعال در دکلره چگونه عمل می کند؟
دکلره یک مکانیسم  دارد و مسیرهای واکنش مختلفی را دنبال می کند که در آن کربن فعال می تواند به عنوان یک واکنش  یا یک کاتالیزور دخالت کند.
کلر آزاد را می توان به صورت گاز کلر، محلول هیپوکلریت سدیم یا جداول هیپوکلریت کلسیم (گرانول) به آب اضافه کرد.
در هر یک از این موارد، کلر به شکل اسید هیپوکلرو (HOCl) حل می شود، اسید ضعیفی که تمایل به تجزیه جزئی دارد.
توزیع بین اسید هیپوکلروس و یون هیپوکلریت به pH و غلظت این گونه ها بستگی دارد. هر دو شکل مولکولی به عنوان کلر آزاد تعریف می شوند.
هر دو اکسیدان قوی هستند که وقتی به آب اضافه می‌شوند تقریباً بلافاصله با ناخالصی‌های آلی و معدنی واکنش نشان می‌دهند و یک اثر بیوسیدال روی میکروارگانیسم‌ها اعمال می‌کنند.
کلری که واکنش نشان می دهد و آن که در این مرحله از گندزدایی مداخله می کند، آزاد نمی ماند و ترکیب می ماند و آزاد نمی ماند. هنگامی که این مرحله به پایان رسید، لازم است کلر آزاد باقیمانده را با استفاده از کربن فعال دانه ای حذف کنید.
هنگامی که کربن در معرض کلر آزاد قرار می گیرد، واکنش هایی رخ می دهد که در آن HOCl یا OCl به یون کلرید کاهش می یابد. این کاهش نتیجه مسیرهای مختلف واکنش های ممکن است.
در دو مورد از رایج ترین آنها، GAC بر اساس واکنش های زیر عمل می کند:
جایی که C نشان دهنده کربن فعال است. CO و CO2 اکسیدهای سطحی هستند که به تدریج فضاهایی را اشغال می کنند که در صورت مسدود شدن، دیگر در واکنش شرکت نمی کنند. برخی از این اکسیدها به صورت CO و CO2 در محلول آزاد می شوند. این کار دوباره فضاهایی را در دسترس می گذارد که بنابراین ظرفیت کربن فعال دانه ای برای این واکنش را افزایش می دهد.
در مورد کلر نیز در اولین لحظات عملیات روی سطح زغال سنگ تجمع می یابد. با  رسیدن HOCl یا OCl  سطح کربن، سرعت واکنش کمی کاهش می یابد و سپس کلر شروع آزاد شدن می کند. این کا��ش سرعت به دلیل مسمومیت کربن توسط اکسیدهای سطحی است. این مسمومیت به تدریج ادامه می یابد، در حالی که ظرفیت جذب و کلر زدایی کربن فعال کاهش می یابد.
در واکنش های فوق می توانید به جای HOCl مداخله کنید، با این تفاوت که H+ تولید نمی شود. مشاهده می شود که کربن فعال واکنش نشان می دهد و بنابراین ناپدید می شود. اگر اکسیدهای سطحی انباشته نمی شد، واکنش تا ناپدید شدن کامل کربن ادامه می یافت.
چه نوع کربنی برای سفید کردن مناسب است؟
رنگ هایی که در مایعات ظاهر می شوند معمولاً مولکول های نسبتاً بزرگی هستند. بنابراین، آنها در منافذ بزرگ جذب می شوند، که باعث می شود کربن برای حفظ آنهایی که دارای بیشترین تخلخل هستند، مناسب تر باشد.
زغال چوب، به ویژه آنهایی که از چوب های نه چندان سخت (مانند کاج) که از نظر شیمیایی فعال می شوند، بیشترین درشت تخلخل را دارند و بنابراین مناسب ترین برای تغییر رنگ هستند.
مشکل این کربن ها این است که خیلی سخت نیستند و در برابر سایش مقاومت چندانی ندارند، به این معنی که باید به صورت پودر اعمال شوند. هنگامی که کربن سفید کننده نیاز به دانه بندی دارد، بهترین جایگزین معمولاً کربن لیگنیت است. این کربن با بیشترین درشت تخلخل است.
کدام نوع کربن فعال برای تصفیه آب مناسب است؟
آلاینده هایی که معمولاً در آب چاه وجود دارند معمولاً با وزن مولکولی کم هستند و برای این موارد مناسب ترین کربن کربنی با ریزتخلخل بالا است.
کربن هایی که به بهترین وجه این شرایط را برآورده می کنند، اولاً کربن های پوسته نارگیل و متعاقباً مواد معدنی قیر هستند.
چرا هنگام نصب کربن بکر، pH آب تغییر می کند؟
هنگامی که یک کربن با مواد شیمیایی فعال می شود، حذف تمام مواد شیمیایی از محصول نهایی برای سازندگان غیرعملی و غیر ضروری است. بنابراین، اگر ماده شیمیایی یک اسید باشد، pH اولین لیتر آبی را که با کربن تماس پیدا می کند، کاهش می دهد. اگر ماده شیمیایی مورد استفاده قلیایی باشد برعکس اتفاق می افتد.
در مورد کربن فعال حرارتی (بدون وجود مواد شیمیایی غیر از بخار آب و گازهای حاصل از احتراق)، pH اولین لیتر آب تصفیه  با آن افزایش می یابد.
زیرا همه سبزیجات دارای مقادیر قابل توجهی سدیم، پتاسیم، کلسیم و سایر کاتیون ها هستند که در فرآیند کربنیزاسیون، به شکل اکسید در کربن باقی می مانند. این اکسیدها در تماس با آب به هیدروکسید تبدیل می شوند و در آب حل می شوند و PH آن را افزایش می دهند.
هنگامی که PH اولین لیتر آبی که با کربن تماس پیدا می کند تغییر نمی کند، می تواند یک کربن با pH تنظیم یا یک کربن فوق خالص (بدون محلول) باشد.
تماس باما
0 notes
clinicab · 18 days
Text
 حذف آرسنیک از آب
               حذف آرسنیک از آب
Tumblr media
در مناطقی که آب آشامیدنی حاوی سطوح ناایمن آرسنیک است، نگرانی جدی، یافتن یک منبع سالم آب آشامیدنی است.  یافتن منبع امن جدید یا حذف آرسنیک از آب دو راه حل اصلی به شمار می آید. اگر نتوان منبع آب سالم از آرسنیک یافت، هدف کوتاه مدت کاهش سطح آرسنیک است. روش‌های مختلفی برای حذف آرسنیک از آب وجود دارد. روش های مهم زیر در زیر مورد بحث قرار می گیرند:
اکسیداسیون
انعقاد، بارش و فیلتراسیون
جذب (فیلتراسیون جذبی)
تبادل یونی
تکنیک های غشایی
اکسیداسیون
بیشتر تاثیر فن‌آوری‌های حذف آرسنیک در از بین بردن شکل پنج ظرفیتی آرسنیک (As(V)، و تبدیل به آرسنات، به چشم می خورد، زیرا شکل سه ظرفیتی (As(III)، آرسنیت عمدتاً کمتر از pH 9.2 شارژ نمی‌شود. بنابراین آرسنات بسیار کمتر از آرسنیت تحرک دارد، زیرا تمایل دارد با کاتیون‌های فلزی رسوب کند یا بر روی سطوح جامد جذب شود.
بنابراین، بسیاری از سیستم های تصفیه شامل یک مرحله اکسیداسیون برای تبدیل آرسنیت به آرسنات هستند. آرسنیت می تواند توسط اکسیژن (O2)، هیپوکلریت (HClO)، پرمنگنات (HMnO4) و پراکسید هیدروژن (H2O2) اکسید شود. اکسیژن اتمسفر در دسترس ترین عامل اکسید کننده است و بسیاری از فرآیندهای تصفیه اکسیداسیون توسط هوا را ترجیح می دهند. با این حال، اکسیداسیون آرسنیک در هوا یک فرآیند بسیار کند است و ممکن است هفته ها برای اکسیداسیون طول بکشد.اکسیداسیون آرسنیت در هوا می تواند توسط باکتری ها، محلول های اسیدی یا قلیایی قوی، مس، کربن فعال پودری و دمای بالا کاتالیز شود .
اکسیداسیون و ته نشینی غیرفعال
در خانه ها اکسیداسیون با اکسیژن موجود به طور طبیعی در هوا در طول جمع آوری و ذخیره سازی  ممکن است باعث کاهش غلظت آرسنیک در آب ذخیره شده شود که به عنوان رسوب غیرفعال نیز شناخته می شود. برای ته نشینی غیرفعال، آب باید برای مدت زمان کافی ذخیره شود تا امکان تبادل اکسیژن از هوا به آب فراهم شود.
به نظر می رسد کاهش آرسنیک توسط رسوب گذاری ساده به کیفیت آب، به ویژه وجود آهن رسوب دهنده در آب، بستگی دارد. قلیائیت زیاد و وجود آهن در آب چاه لوله باعث افزایش حذف آرسنیک با ذخیره سازی می شود.
انعقاد و فیلتراسیون
انعقاد و فیلتراسیون با نمک های فلزی و آهک و به دنبال آن فیلتراسیون، مستندترین روش حذف آرسنیک از آب است. در فرآیند انعقاد، آرسنیک از طریق سه مکانیسم از محلول حذف می شود .
رسوب: تشکیل ترکیبات نامحلول.
رسوب همزمان: ادغام گونه های آرسنیک محلول در فازهای هیدروکسیدهای فلزی در حال رشد (مانند رسوب همزمان با Fe(III)؛
جذب: اتصال الکترواستاتیکی آرسنیک محلول به سطوح خارجی هیدروکسید فلز نامحلول.
فناوری انعقاد از سال 1970 در شمال شیلی برای حذف آرسنیک از آب آشامیدنی استفاده شده است. این تجربه نشان می دهد که انعقاد یک فناوری موثر برای حذف آرسنیک است. در حال حاضر می توان آرسنیک را از 400 میکروگرم در لیتر به 10 میکروگرم در لیتر با سرعت 500 لیتر در ثانیه کاهش داد، با فرض اینکه pH، عوامل اکسید کننده و انعقاد به شدت کنترل شوند .
فرآیندهای انعقاد لخته سازی با استفاده از آلوم، کلرید آهن یا سولفات آهن در حذف آرسنیک موثر هستند
آنها شناخته شده ترین راه تصفیه آرسنیک هستند و در مطالعات آزمایشگاهی و میدانی بیشتر از سایر فناوری ها آزمایش شده اند .هنگامی که به آب اضافه می شوند، تحت هم زدن موثر به مدت یک تا چند دقیقه حل می شوند. در طی این فرآیند لخته سازی، انواع ریز ذرات و یون های دارای بار منفی با اتصال الکترواستاتیکی به لخته ها متصل می شوند.
استفاده از آهن طبیعی موجود در آب های زیرزمینی
استفاده از آهن طبیعی موجود در آب های زیرزمینی یک روش امیدوارکننده برای حذف آرسنیک با جذب است، به این معنی که نیازی به افزودن مواد شیمیایی نیست. رسوبات آهنی که در اثر اکسیداسیون آهن محلول به وجود می‌آیند، آرسنیک را از طریق انعقاد، جذب، رسوب و فیلتراسیون و همچنین با اکسیداسیون حذف می‌کنند. راندمان واحدها به میزان آرسنیک و آهن آب بستگی دارد. با اف��ایش زمان تماس گونه های آرسنیک و لخته های آهن می توان آن را افزایش داد.
انعقاد با آهک
تصفیه آب با افزودن آهک سریع، CaO یا آهک هیدراته، Ca(OH)2 آرسنیک را حذف می کند. تصفیه آهک فرآیندی مشابه انعقاد با نمک فلز است. هیدروکسید کلسیم رسوب شده، Ca(OH)2 به عنوان یک لخته جذب کننده برای آرسنیک عمل می کند. آهک اضافی حل نمی شود، اما به عنوان یک کمک منعقد کننده باقی می ماند که باید همراه با رسوبات از طریق فرآیند ته نشینی و فیلتراسیون حذف شود.
مشاهده شده است که حذف آرسنیک توسط آهک نسبتاً کم است، معمولاً بین 40-70٪. بیشترین حذف در pH 10.6 تا 11.4 به دست می آید (AHMED 2001). نرم کردن آهک ممکن است به عنوان یک پیش تصفیه مورد استفاده قرار گیرد و به دنبال آن انعقاد زاج یا آهن انجام شود.
اکسیداسیون خورشیدی و رسوب اکسیدهای Fe(III) با As(V) جذب شده
SORAS یک روش ساده است که از تابش آب با نور خورشید در بطری شفاف PET یا دیگر UV-A (نگاه کنید به SODIS) برای کاهش سطح آرسنیک در آب آشامیدنی استفاده می کند. روش SORAS مبتنی بر دو مرحله است: مرحله اول شامل اکسیداسیون فتوشیمیایی (از طریق اثر نور UV خورشیدی) As (III) به As (V) و سپس مرحله دوم شامل بارش یا فیلتر کردن As (V) است.
جذب شده روی اکسیدهای آهن (III) که یا به طور طبیعی وجود دارند یا اضافه می شوند و با افزودن آب لیمو به حالت تعلیق نگهداری می شوند. این می تواند یک روش تصفیه آب باشد که در سطح خانگی برای تصفیه مقادیر کمی آب آشامیدنی استفاده می شود.
Tumblr media
فیلتراسیون جذبی
چندین محیط جذب مانند آلومینا فعال، کربن فعال، ماسه پوششی با آهن و منگنز، خاک رس کائولینیت، اکسید آهن هیدراته، بوکسیت فعال، اکسید تیتانیوم، اکسید سیلیسیم و بسیاری از محیط های طبیعی و مصنوعی هستند که آرسنیک را از آب حذف می کنند. کارایی محیط جذب به استفاده از عوامل اکسید کننده به عنوان کمک برای تحریک جذب آرسنیک در محیط بستگی دارد.
آلومینا فعال
آلومینا فعال (Al2O3) سطح جذب خوبی دارد، در محدوده 200-300 m2/g. مساحت سطح بزرگ به ماده منطقه بسیار زیادی برای جذب آرسنیک می دهد. هنگامی که آب از یک ستون بسته بندی شده از آلومینا فعال عبور می کند، ناخالصی ها از جمله آرسنیک موجود در آب روی سطوح دانه های آلومینا فعال می نشیند.
در نهایت، ستون ابتدا در ناحیه بالایی خود و سپس در پایین دست به سمت انتهای پایین اشباع و در نهایت ستون کاملاً اشباع می شود. بازسازی آلومینا اشباع شده با قرار دادن محیط در معرض 4 درصد سود سوزآور (NaOH) به صورت دسته‌ای یا با جریان از طریق ستون انجام می‌شود که منجر به فاضلاب سوزاننده شدیداً آلوده به آرسنیک می‌شود.
حذف آرسنیک توسط آلومینا فعال شده توسط pH و محتوای آرسنیک آب کنترل می شود. با نزدیک شدن به نقطه بار صفر، راندمان کاهش می یابد و در pH 8.2 که سطح بار منفی دارد، ظرفیت حذف تنها 5-2 درصد ظرفیت در pH بهینه است. برخی از نمونه‌هایی از محیط‌های جذبی مبتنی بر آلومینا فعال عبارتند از: «آلومینای فعال BUET»، «آلومینای فعال تقویت‌شده آلکان» و «واحد تصفیه آرسنیک Apyron».
هیدروکسید آهن دانه ای
هیدروکسید آهن دانه ای نیز برای حذف جذبی آرسنات، آرسنیت و فسفات از آب استفاده می شود. راکتورهای گرانول هیدروکسید آهن، جاذب های بستر ثابت هستند که مانند یک فیلتر معمولی با جریان آب رو به پایین عمل می کنند. آب حاوی آهن محلول بالا و مواد معلق باید هوادهی شود و از طریق بستر شن و ماسه به عنوان پیش تصفیه تصفیه شود تا از گرفتگی بستر جذب جلوگیری شود.
اکسید سریم آبدار
اکسید سریم آبدار نیز جاذب خوبی است. آزمایش آزمایشگاهی و آزمایش میدانی مواد در چندین مکان نشان داد که این جاذب در حذف آرسنیک از آب‌های زیرزمینی بسیار کارآمد است.
تراشه های آجر و ماسه روکش با آهن
شن و ماسه با روکش آهن و تراشه های آجری با روکش آهن در از بین بردن As(III) و As(V) موثر هستند. "فیلتر آرسنیک Shapla" نمونه‌ای از فیلتر حذف آرسنیک خانگی است که بر اساس تراشه‌های آجری با روکش آهن ساخته و توسط سازمان توسعه بین‌المللی (IDE) توسعه یافته است.آب جمع‌آوری‌ از چاه‌های لوله‌ای آلوده از میان فیلترهایی که در ظرف خاکی قرار گرفته‌اند عبور می‌کند که در زیر آن یک سیستم زهکشی وجود دارد.
فیلترهای آرسنیک خانگی
برخی از فیلترها مانند SONO 3 KALSHI، KanchanTM یا فیلتر آرسنیک SAFI از پرکننده‌های آهن صفر (آهن جامد)، ماسه، تراشه‌های آجری و کک چوب برای حذف آرسنیک و سایر فلزات کمیاب از آب زیرزمینی استفاده می‌کنند (همچنین به فیلترهای آرسنیک مراجعه کنید). آرسنیک از طریق جذب روی مخلوط پرکننده آهن صفر ظرفیتی نیمه اکسید و ماسه حذف می گردد.
فیلتر KanchanTM توسط موسسه فناوری ماساچوست (MIT)، سازمان محیط زیست و بهداشت عمومی (ENPHO) و برنامه تامین آب و بهداشت روستایی (RWSSSP) نپال توسعه یافته است. فیلتراسیون آهسته ماسه و جذب روی هیدروکسید آهن را با هم ترکیب می کند و در حذف آرسنیک، عوامل بیماری زا، آهن، کدورت، بو و برخی دیگر از آلاینده ها در آب آشامیدنی موثر است.
فیلتر
فیلتر از یک جعبه بتنی یا پلاستیکی تشکیل یافته که با لایه‌هایی از شن و ماسه پر است، مانند فیلتر بیوسند. در بالای فیلتر به عنوان مرحله اول یک لایه 5 کیلوگرمی میخ آهنی نصب می شود. این میخ‌ها وقتی در معرض هوا و آب قرار می‌گیرند خیلی سریع زنگ می‌زنند و ذرات هیدروکسید آهن تولید می‌کنند که جاذب عالی آرسنیک است. هنگامی که آب حاوی آرسنیک در فیلتر را می افزایند، واکنش کمپلکس سطحی رخ می دهد و آرسنیک به سرعت بر روی سطح ذرات هیدروکسید آهن می نشیند.
سپس  به لایه شنی زیر ذرات آهن حاوی آرسنیک می افزایند. به دلیل فضای منافذ بسیار کوچک در لایه ماسه ریز، ذرات آهن حاوی آرسنیک در چند سانتی‌متر بالای لایه ماسه ریز به دام می‌افتند. در نتیجه، آرسنیک به طور موثر از آب حذف می شود.
فیلتر SAFI یک فیلتر شمع سرامیکی سازگار است که بر اساس اصول جذب و فیلتراسیون بر روی مواد کامپوزیت متخلخل فعال شمع عمل می کند. این فیلتر از مواد متخلخل کامپوزیتی مانند کائولینیت و اکسید آهن است که اکسید آهن هیدراته بر روی آن با عملیات شیمیایی و حرارتی متوالی رسوب می کند. اکسی هیدروکسیدهای آهن، آلومینیوم و منگنز در حذف آرسنیک، آهن و باکتری ها نقش دارند.
تبادل یونی
تبادل یونی مشابه با آلومینا فعال است. فقط محیط یک رزین مصنوعی با ظرفیت تبادل یونی متعارف بهتر است. رزین مصنوعی بر اساس یک اسکلت پلیمری متقابل به نام ماتریس  است. گروه‌های عاملی باردار از طریق پیوند کووالانسی به ماتریکس متصل می‌شوند و به گروه‌های اسیدی، ضعیف اسیدی، قوی بازی و ضعیف بازی تقسیم می‌شوند. فرآیند تبادل یونی  به pH آب وابستگی کمتری دارد .
تکنیک های غشایی
غشاهای مصنوعی برای از بین بردن بسیاری از آلاینده ها از آب از جمله پاتوژن ها، نمک ها و یون های فلزی مختلف کاربرد دارند. معمولاً از دو نوع فیلتراسیون غشایی استفاده می شود: غشاهای کم فشار مانند میکروفیلتراسیون و اولترافیلتراسیون و غشاهای پرفشار مانند نانوفیلتراسیون و اسمز معکوس. حذف آرسنیک توسط فیلتراسیون غشایی مستقل از pH و حضور سایر املاح است اما وجود مواد کلوئیدی بر آن تأثیر منفی می‌گذارد.
آهن و منگنز همچنین می توانند منجر به پوسته پوسته شدن و رسوب غشاء شوند.آلودگی غشایی توسط ناخالصی های موجود در آب، قابل شستشوی معکوس نیست. آبی که غلظت‌های بالایی از مواد جامد معلق دارد، برای حذف آرسنیک با تکنیک‌های غشایی برای جلوگیری از گرفتگی نیاز به پیش تصفیه دارد.
حذف آرسنیک از آب با اسمز معکوس
اسمز معکوس یکی از روش ها و تجهیزات بسیار کاربردی در تصفیه آب می باشد که عکس عمل اسمز موجود در طبیعت رفتار می کند. در این تجهیزات آب حاوی آلاینده ها با فشار از غشاهایی با منافذ بسیر کوچک می گذرد. بر اثر عبور آب از این غشاها ذرات کوچکی مانند آرسنیک امکان عبور را پیدا نخواهند کرد.
حذف آرسنیک با اولترافیلتراسیون
استفاده از غشاهای اولترافیلتراسیون از دیگر روش ها برای کاهش مقدار آرسنیک موجود در آب می باشد که البته کارایی آن کمتر از اسمز معکوس است. با توجه به اینکه منافذ این غشاها بزرگتر از اسمز معکوس می باشند، به هم��ن دلیل بهتر است ابتدا عمل لخته سازی و انعقاد صورت گیرد تا کارایی و راندمان افزایش پیدا کند.
حذف آرسنیک از آب با نانوفیلتراسیون
عبور آب از غشاهای نانوفیلتراسیون که دارای منافذی به اندازه 0.001 میکرون می باشند نیز می تواند گزینه ای نسبتا مناسب برای حذف آرسنیک از آب باشد. این گروه از ممبران ها نیز کارایی کمتری نسبت به RO دارند.
دفع لجن
تمام فن آوری های حذف آرسنیک از آب در نهایت  در محیط های جذب، لجن یا محیط های مایع آرسنیک را متمرکز می کنند و دفع بی رویه آنها ممکن است منجر به آلودگی محیط زیست شود.
از این رو، دفع زیست محیطی ایمن لجن، محیط های اشباع  و زباله های مایع غنی از آرسنیک بسیار نگران کننده است.
آزمایش‌هایی برای ارزیابی تبدیل آرسنیک از محلول‌های آبی در حضور مدفوع گاو انجام شد.
برخی از مطالعات نشان دادند که فرآیند بیوشیمیایی (به عنوان مثال، متیلاسیون زیستی) در حضور فضولات تازه گاو ممکن است منجر به کاهش قابل توجه آرسنیک از پسماندهای تصفیه غنی از آرسنیک شود.
تماس با ما:
تماس باما
0 notes
clinicab · 18 days
Text
      سیستم های هوادهی فاضلاب
      سیستم های هوادهی فاضلاب
 هوادهی فاضلاب چیست؟
هوادهی فاضلاب یک فرآیند لجن فعال است. لجن فعال فرآیندی با غلظت بالایی از میکروارگانیسم ها است. در این مرحله، فرآیندهای بیولوژیکی مانند تصفیه هوازی، ترکیبات آلی و آلاینده‌های موجود در فاضلاب را تجزیه می‌شوند.
مواد شیمیایی برای حذف آلاینده های آلی پایدار، باکتری ها و پاتوژن های میکروبی استفاده می شود.
نتیجه هوادهی فاضلاب چیست؟
به طور معمول، فاز ثانویه مواد شیمیایی و ترکیبات سمی را حذف می کند. تکرار چندین بار این مرحله  برای آب غیرمعمول نیست.
چرا هوادهی مهم است؟
یک سیستم هوادهی خوب طراحی شده مستقیماً بر سطح تصفیه فاضلاب به دست آمده تأثیر می گذارد. کلید تصفیه سریع، اقتصادی، ایمن و موثر فاضلاب، سیستم هوادهی است که اکسیژن را به طور مساوی توزیع می کند.
فاضلاب چگونه هوادهی می شود؟
هوادهی یک فرآیند لجن فعال است. هوا را به داخل مخزن  وارد می کند و باعث رشد میکروبی در فاضلاب می شود. باکتری هایی که لجن فعال را تشکیل می دهند، پس از ته نشین شدن در یک مخزن ته نشینی جداگانه، مجدداً به حوضچه هوادهی گردش می کنند. چرخش مجدد به حوضچه هوادهی سرعت تجزیه را افزایش می دهد.
نمای کلی طراحی کارخانه
Tumblr media
مکان های هوادهی
فاز هوادهی مواد آلی، ذرات ریز و مواد شیمیایی بالقوه سمی و مضر را از پساب وارد شده به سیستم ،حذف می کند. برای کسب اطلاعات بیشتر در مورد مکان های هوادهی تصفیه فاضلاب، ادامه مطلب را بخوانید.
حوضچه های هوادهی و هاضم های هوازی
تالاب هوادهی یا حوض هوادهی یک حوضچه تصفیه است که هوادهی مصنوعی را تامین می کند. هوادهی مصنوعی باعث افزایش اکسیداسیون بیولوژیکی فاضلاب می شود.
حوضه های هوادهی تالاب ها یا برکه های خاکی بزرگ و باز هستند. سطوح بزرگ درگیر باعث تغییرات شدید دما نسبت به هاضم های هوازی می شود. بنابراین، باعث ایجاد تغییرات در زمان نگهداری لجن می شود. اگر مواد جامد به فرآیند حوضچه هوادهی برگردند، در این صورت تفاوتی بین حوضچه هوادهی و فرآیند لجن فعال وجود ندارد.
Tumblr media
تالاب های مختلط معلق
تالاب های مخلوط معلق، مواد آلی محلول و زیست تخریب پذیر در پساب را به زیست توده تبدیل می کنند که می تواند به صورت لجن ته نشین شود. پساب به حوض دوم می رود که لجن می تواند در آنجا ته نشین شود.
هواده های سطحی شناور
دو عملکرد در یک سیستم هوادهی سطحی ارائه می شود:
(1) انتقال هوا به داخل حوضچه ها برای تسهیل واکنش های اکسیداسیون بیولوژیکی.
(2) آنها اختلاط مورد نیاز برای پراکندگی هوا و تماس با واکنش دهنده ها (یعنی اکسیژن، فاضلاب و میکروب ها) را فراهم می کنند.
هواده های سطح شناور اکسیژن را برای هوادهی تحویل می دهند. با این حال، هواده های سطحی مخلوطی را که معادل آنچه در سیستم های لجن فعال به دست می آید، ارائه نمی دهند.
هوادهی پراکنده غوطه ور
هوای پخش شده غوطه ور شکلی از شبکه پخش کننده در داخل یک تالاب است. دو نوع اصلی سیستم های هوادهی پراکنده مستغرق برای کاربردهای تالاب، شناور و جانبی غوطه ور هستند. هر دو سیستم از پخش کننده های حباب ریز یا متوسط ​​برای ارائه هوادهی و فرآیند اختلاط آب استفاده می کنند. دیفیوزرها را می توان کمی بالاتر از کف تالاب معلق کرد یا ممکن است در پایین قرار گیرد.
هوادهی کانال
کانال هایی که فاضلاب را به مخازن ته نشینی اولیه توزیع می کنند، هوادهی می شوند تا مواد جامد را در حالت تعلیق و مستقل از سرعت جریان آب نگه دارند. مقدار هوای مورد نیاز محدوده و مشروب مخلوط به مخازن ته نشینی لجن فعال تبدیل می شود که هوادهی می شوند.
هوادهی پست
الزامات برای پساب نیاز به سطوح بالای اکسیژن محلول. این مقررات می خواهد اطمینان حاصل کند که پساب سطح پایین اکسیژن محلول با جریان دریافت کننده مخلوط نمی شود.
یک روش هوادهی آبشاری است که در آن پساب توسط تلاطم مجموعه ای از آبشارها هوادهی می شود. با این حال، دمای آب به شدت بر توانایی آب در جذب اکسیژن تأثیر می گذارد.
Tumblr media
تماس با ما:
تماس باما
0 notes
clinicab · 18 days
Text
تاریخچه تصفیه آب
                تاریخچه تصفیه آب
Tumblr media
درباره ی تاریخچه تصفیه آب چه می دانید؟ آیا می دانستید که تصفیه آب به ۲۰۰۰ سال قبل از میلاد برمی گردد؟ در این پست، توسعه روش‌شناسی تصفیه آب را از منشأ آن، در طول اعصار و تا عصر مدرن دنبال می‌کنیم. ما از جوشاندن و صاف کردن آب آشامیدنی خود فاصله زیادی گرفته ایم.
Tumblr media
از آنجایی که ما هنوز مناطقی از جهان داریم که قادر به تامین آب سالم برای جمعیت خود نیستند، ممکن است به نظر برسد که تصفیه آب یک توسعه نسبتاً جدید و مدرن است. تصور اینکه مردم هزاران سال پیش از آب با درجه خلوصی که امروزه می توانیم به دست آوریم لذت ببرند، سخت است. با این حال، در حالی که روش ها تغییر کرده اند، تصفیه آب سابقه ای به هزاران سال پیش دارد.
بیایید توسعه تصفیه آب را از مبدأ آن، از طریق توسعه شیوه های جدید و مدرن ردیابی کنیم.
تاریخچه تصفیه آب از دوران باستان شروع شده است:
نوشته‌های یونان باستان و سانسکریت مربوط به ۲۰۰۰ سال قبل از میلاد مسیح، روش‌هایی را برای تصفیه آب توصیه می‌کنند. حتی در آن زمان، مردم می‌دانستند که آب را می‌توان با گرما تصفیه کرد، و تصفیه شن و ماسه، جوشاندن و صاف کردن را انجام می‌دادند.
انگیزه اصلی آنها در انجام این کار این بود که طعم آب را بهتر کنند، زیرا آنها هنوز نمی توانستند بین آب تمیز و آب کثیف تمایز قائل شوند. آنها می دانستند که سعی می کنند کدورت آب را کاهش دهند، اما چیز زیادی در مورد آلودگی شیمیایی یا میکروارگانیسم ها نمی دانستند.
اصل انعقاد در تاریخچه تصفیه آب
اولین بار مصری ها اصل انعقاد را در حدود 1500 سال قبل از میلاد کشف کردند. آنها از زاج برای رسیدن به نشست ذرات معلق استفاده کردند، همانطور که روی دیوار مقبره آمنوفیس دوم و رامسس دوم نشان داده شده است.
بقراط
بقراط برای اولین بار شروع به کشف خواص درمانی آب در حدود 500 سال قبل از میلاد کرد. او غربال آب را اختراع کرد و آستین بقراطی(Hippocratic sleeve)، اولین فیلتر کیسه ای را ایجاد کرد. این اختراع اخیر توانست رسوباتی را که به آب مزه یا بوی بدی می‌داد از بین ببرد.
بین 300 تا 200 قبل از میلاد، روم شروع به ساخت قنات های خود کرد و ارشمیدس پیچ آب(Water screw) خود را اختراع کرد.
قنات ها در تاریخچه تصفیه آب
در قرن هفتم قبل از میلاد، آشوری ها اولین سازه را برای انتقال آب ساختند، سازه ای به ارتفاع 32 فوت و طولی نزدیک به 100 فوت که آب را نزدیک به 50 مایل از یک دره به نینوا می رساند.
رومی‌ها بعداً خودشان شروع به ساختن بسیاری از این سازه‌ها کردند و آنها را قنات نامیدند که از واژه‌های لاتین «آب» و «سرب» است. قنات ها سازه های پیچیده ای بودند که تنها با استفاده از نیروی گرانش آب را برای مسافت های طولانی منتقل می کردند. آنها شهرهای بزرگ و مناطق صنعتی امپراتوری روم را تامین کردند.
رم به تنهایی یازده مورد از این قنات ها را ساخت و بیش از 250 مایل از آنها را در طول 500 سال ساخت. بیشتر آنها در زیر زمین ساخته شدند تا از آلودگی و جنگ در امان باشند. آنها روزانه بیش از 250 میلیون گالن آب را به رم می‌رسانند و بسیاری از آنها هنوز در اسپانیا، ترکیه، آلمان و فرانسه هستند. امروزه بسیاری از تکنیک های مورد استفاده در این قنات ها برای ساخت سیستم های حمل و نقل آب مدرن مورد استفاده قرار می گیرند.
پیچ آب
پیچ آب، پیشرو بسیاری از پمپ های صنعتی امروزی.
مهندس سبز ارشمیدس بین 287 تا 212 قبل از میلاد زندگی می کرد. یکی از اختراعات او ماشینی بود برای رساندن آب به سطح بالاتر از یک حجم کم آب. این به شکل یک پیچ بسیار بزرگ در داخل یک لوله توخالی است که آب را به بالا پمپ می کند.
پیچ ارشمیدس در ابتدا برای حذف آب از آب‌ها و معادن کشتی و همچنین برای کمک به آبیاری زمین‌های کشاورزی استفاده می‌شد. طراحی او هنوز برای انتقال آب به مناطق مرتفع امروزی، مانند شهر هلندی Zoetermeer استفاده می شود. مهمتر از آن، به عنوان پایه ای برای بسیاری از پمپ های صنعتی مدرن عمل می کند.
تصفیه آب پس از محو شدن دوباره متولد می شود
نمک زدایی
سر فرانسیس بیکن در سال 1627، زمانی که آزمایش هایی را در مورد نمک زدایی آب دریا آغاز کرد، پیشرفت روش های تصفیه آب را دوباره آغاز کرد. او سعی کرد از فیلتر شنی برای فیلتر کردن نمک از آب شور استفاده کند. آزمایش او موفقیت آمیز نبود، اما او زمینه را برای مشارکت سایر دانشمندان در این زمینه فراهم کرد.
اولین فیلترهای آب در تاریخچه تصفیه آب
محققان اولین فیلترهای آب متشکل از زغال چوب، پشم و اسفنج برای مصارف خانگی در سال 1700 ساختند. سپس رابرت تام اولین تصفیه خانه آب شهری را در سال 1804 در اسکاتلند طراحی کرد. تصفیه در آنجا از فیلتر شنی آهسته استفاده کرد و آنها آب را با گاری اسبی توزیع کردند. لوله های آب سه سال بعد نصب شد و این ایده مطرح شد که همه باید به آب آشامیدنی سالم دسترسی داشته باشند. متأسفانه، این هنوز در همه جای دنیا حتی تا به امروز به واقعیت تبدیل نشده است.
سپس، در سال 1854 محققان دریافتند که اپیدمی وبا از طریق آب سرایت می‌کند و شیوع آن در مناطقی که فیلترهای شنی داشتند، شدت کمتری داشته است. جان اسنو متوجه شد که علت آن آلودگی آب فاضلاب به پمپ آب است و از کلر برای تصفیه آن استفاده کرد. این به ایجاد عمل ضد عفونی آب و کلرزنی کمک کرد.
آب بو و طعم خوبی داشت، بنابراین این زمانی بود که آنها متوجه شدند که این برای تضمین ایمنی آب کافی نیست. در نتیجه، شهرها شروع به نصب فیلترهای آب شهری کردند و مقررات دولتی آب شروع به عادی شدن کرد.
Tumblr media
فیلترهای شنی
آمریکا در دهه 1890 شروع به ساخت فیلترهای شنی بزرگ کرد. فیلتر شنی سریع از فیلتر شنی آهسته بهتر عمل کرد و آنها از یک جریان جت برای تمیز کردن فیلتر و بهبود ظرفیت آن استفاده کردند. محققان همچنین دریافتند زمانی که ابتدا آب را با انعقاد و ته نشینی تصفیه کنید، فیلتراسیون بهتر عمل می کند. در همان زمان، کلرزنی آب گسترده تر شد و بیماری های ناشی از آب مانند وبا و حصبه کمتر مورد توجه قرار گرفتند.
کلر زنی
مدت زیادی نگذشته بود که کلرزنی عوارض جانبی منفی را آشکار کرد. تبخیر کلر با بیماری های تنفسی مرتبط بود و کارشناسان شروع به جستجوی جایگزین کردند. هیپوکلریت کلسیم و کلرید آهن برای اولین بار در بلژیک در سال 1902 و ازن برای اولین بار در فرانسه در سال 1906 استفاده شد. مردم همچنین شروع به استفاده از فیلترهای آب خانگی کردند تا از اثرات منفی کلر خود جلوگیری کنند.
نرم کننده آب
نرم کننده آب در سال 1903 برای نمک زدایی آب اختراع شد. سپس در سال 1914 استانداردهایی بر اساس رشد کلیفرم برای آب آشامیدنی در ترافیک عمومی اجرا شد. با این حال، تا دهه 1940 بود که این استانداردهای آب در منابع آب شهری اعمال شد. از آنجا، سی سال دیگر قبل از قانون آب پاک در سال 1972 و قانون آب آشامیدنی سالم در سال 1974 بود که این اصل را ایجاد کرد که همه حق دارند از آب سالم برخوردار باشند.
آلودگی صنعتی
این همچنین زمانی بود که نگرانی های عمده بهداشت عمومی در مورد آب آشامیدنی ��ز باکتری های بیماری زا به آلاینده های مصنوعی مانند آفت کش ها، مواد شیمیایی و لجن صنعتی تغییر مکان داد. مقررات جدید به آلودگی آب و ضایعات ناشی از فرآیندهای صنعتی می‌پردازد و تصفیه خانه‌های آب با تهدیدات جدید سازگار شده‌اند. آنها تکنیک های جدیدی از جمله جذب کربن فعال، هوادهی و لخته سازی را به کار گرفتند.
در دهه 1980، محققان اولین غشاها را برای سیستم های اسمز معکوس ساختند. بلافاصله پس از آن، کارخانه های تصفیه آب به طور منظم ارزیابی خطر آب را آغاز کردند.
امروزه بیشتر آزمایش‌ها در تصفیه آب بر کاهش اثرات ضدعفونی کلر مانند تشکیل تری هالومتان و خوردگی لوله‌های آب مبتنی بر سرب متمرکز است.
تماس با ما:
تماس باما
0 notes
clinicab · 18 days
Text
نیتریفیکاسیون
Tumblr media
 فرآیند نیتریفیکاسیون بیولوژیکی در سیستم تصفیه فاضلاب
نیتریفیکاسیون :Nitrification
حذف نیتروژن با نیتریفیکاسیون بیولوژیکی و نیترات زدایی یک فرآیند دو مرحله ای است. نيتريفيكاسيون زيستي تبديل يا اكسيداسيون يون هاي آمونيوم توسط باکتریهای نیتروزوموناس به يونهاي نيتريت و سپس توسط باکتریهای نبتروباکتر به يون هاي نيترات ميباشد. 
طي اکسیداسیون يون هاي آمونیوم و نیتریت، اکسیژن به همراه گروهي از باکتری ها موسوم به باکتری هاي ازت خوار فعالیت دارند. در واقع اصطلاح نیتریفیکاسیون مربوط به تبدیل یا اکسیداسیون آمونیاک به نیترات است.
همانطور که گفته شد این فرایند از طریق باکتری های نیترات انجام می شود که اختصاصی می باشند و با اکسیداسیون آمونیاک انرژی بدست می آورند. به این دسته از ارگانیسم ها شیمیواتوتروف می گویند.  این ارگانیسم ها بوسیله اکسیداسیون شیمیایی انرژی بدست می آورند و به اصطلاح خود تغذیه ای هستند زیرا به مواد آلی که از قبل تشکیل شده نیاز ندارند.
هدف از نیتریفیکاسیون:
تأثیر آمونیاک بر دریافت اکسیژن آب با توجه به غلظت DO و ایجاد سمیت برای ماهی ها
نیاز به حذف نیتروژن برای کنترل اوتروفیکاسیون (باکتریهای اتوتروف هوازی مسئول نیتریفیکاسیون در فرآیندهای لجن فعال و بیوفیلم است)
نیاز به ارائه کنترل نیتروژن برای کاربردهای استفاده مجدد از آب از جمله تغذیه آب زیرزمینی
حداکثر غلظت مجاز برای نیتروژن نیترات 45 میلی گرم در لیتر به عنوان نیترات یا 10 میلی گرم در لیتر به عنوان نیتروژن است.
غلظت کل نیتروژن آلی و آمونیاکی در فاضلاب شهری در محدوده 25 تا 45 میلی گرم در لیتر به عنوان نیتروژن بر اساس دبی 450 لیتر برای هر نفر در روز
فرآیند نیتریفیکاسیون
فرآیند نیتریفیکاسیون در تصفیه فاضلاب هم در فرآیندهای رشد معلق و هم در فرآیندهای بیولوژیکی رشد پیوسته انجام می شود.
فرآیندهای رشد معلق
نیتریفیکاسیون همراه با حذف BOD در فرآیند تک لجن قابل دستیابی است که شامل مخزن هوادهی، زلال ساز و سیستم بازیافت لجن است.
در صورت وجود مواد سمی و بازدارنده در فاضلاب، سیستم رشد معلق دو لجن ممکن است در نظر گرفته شود که از دو مخزن هوادهی و دو زلال کننده به صورت سری تشکیل شده است. اولین مخزن هوادهی/واحد شفاف کننده در SRT کوتاه برای حذف BOD و مواد سمی، به دنبال آن نیتریفیکاسیون در مخزن هوادهی/واحد زلال ساز دوم که در SRT طولانی بکار گرفته می شود، کار می کند. رشد باکتری های نیتریفیک بسیار کندتر از باکتری های هتروتروف است.
فرآیندهای رشد پیوست شده
برای نیتریفیکاسیون، بیشتر BOD باید قبل از ایجاد موجودات نیتریفیک کننده حذف شود
باکتری‌های هتروتروف بازده زیست توده بالاتری دارند و بر سطح سیستم‌های فیلم ثابت نسبت به باکتری‌های نیتریفیک مسلط هستند.
نیتریفیکاسیون در راکتور رشد متصل پس از حذف BOD یا در سیستم رشد متصل جداگانه طراحی شده برای نیتریفیکاسیون انجام می شود.
نرخ نیتریفیکاسیون برای فرآیندهای رشد پیوسته بیشتر از فرآیندهای رشد معلق است. فرآیندهای رشد پیوسته معمولاً مواد جامد معلق بیشتری را در پساب نسبت به فرآیندهای رشد معلق حمل می‌کنند.
Tumblr media
میکروبیولوژی نیتریفیکاسیون
باکتری های اتوتروف هوازی مسئول نیتریفیکاسیون در لجن فعال و فرآیندهای بیوفیلم هستند.
فرآیند دو مرحله‌ای در نیتراتاسیون شامل دو گروه باکتری است. مرحله اول، آمونیاک توسط یک گروه (Nitrosomonas) به نیتریت اکسید می شود و مرحله دوم، نیتریت توسط گروه دیگری از باکتری های اتوتروف (Nitrobacter) به نیترات اکسید می شود.
سایر باکتری های اتوتروف برای اکسیداسیون آمونیاک به نیتریت (پیشوند با Nitroso-): نیتروسوکوکوس، نیتروزوسپیرا، نیتروزولوبوس و نیتروسوروبریو
سایر باکتری های اتوتروف برای اکسیداسیون نیتریت به نیترات (پیشوند با Nitro-): نیتروکوکوس، نیتروسیرا، نیتروسپینا و نیتروئیستیس
عوامل موثر بر فرآیند نیتریفیکاسیون
عوامل محیطی: pH
فرآیند نیتریفیکاسیون در تصفیه فاضلاب به pH حساس است و در مقادیر pH زیر 6.8 به طور قابل توجهی کاهش می یابد.
نرخ نیتریفیکاسیون بهینه در مقادیر pH در محدوده 7.5-8.0 رخ می دهد. pH از 7.0 تا 7.2 به طور معمول استفاده می شود. آبهای کم قلیایی نیاز به قلیایی بودن برای حفظ مقادیر pH قابل قبول دارند.
مقدار قلیائیت اضافه شده بستگی به غلظت اولیه قلیایی و مقدار NH4-N برای اکسید شدن دارد.
قلیاییت به شکل آهک، خاکستر سودا، بی کربنات سدیم یا هیدروکسید منیزیم اضافه شده است.
عوامل محیطی: سمیت
نیتریفایرها شاخص های خوبی برای حضور ترکیبات سمی آلی در غلظت های پایین هستند.
ترکیبات سمی عبارتند از: حلال مواد شیمیایی آلی، آمین ها، پروتئین ها، تانن ها، ترکیبات فنلی، الکل ها، سیانات ها، اترها، کاربامات ها و بنزن.
عوامل محیطی: فلزات
مهار کامل اکسیداسیون آمونیاک در 0.25 میلی گرم در لیتر نیکل، 0.25 میلی گرم در لیتر کروم و 0.10 میلی گرم در لیتر مس
عوامل محیطی: آمونیاک یونیزه نشده
نیتریفیکاسیون نیز توسط آمونیاک غیر یونیزه (NH3) یا آمونیاک آزاد و اسید نیتروژن غیریونیزه (HNO2) مهار می شود.
اثرات بازدارندگی به غلظت گونه های نیتروژن کل، دما و pH بستگی دارد.
دنیتریفیکاسیون :Denitrification
به اصطلاح احیای بیولوژیکی نیترات به اکسید نیتریک، اکسید نیترو و گاز نیتروژن دنیتریفیکاسیون می گوییم.دنیتریفیکاسیون نوعی تنفس بی هوازی که توسط گونه های سودوموناس ، تیوباسیلوس و پاراکوکوس انجام می شود. دنیتریفیکاسیون برای احياء نیترات را تا حد نیتریت پیش می رود و از آنزیم نیترات ردوکتاز استفاده کرده که در حضور اکسیژن کارایی ندارد.‌
فرایند دنیتریفیکاسیون
دنیتریفیکاسیون فرآیندی است که طی آن بوسیله میکروارگانیسم ها نیترات به ترکیبات گازی مانند؛ اکسید نیتریک، اکسید نیترو و نیتروژن تبدیل می شود.
زمانی که چندین نوع باکتری بر روی مواد آلی در شرایط غیر هوازی قرار داشته باشند این فرایند را انجام می دهند. زیرا در هنگام عدم وجود اکسیژن برای تنفس معمولی هوازی آنها بجای اکسیژن از نیترات به عنوان آخرین پذیرنده الکترون استفاده می کنند. این مرحله را اصطلاحأ تنفس غیر هوازی می نامیم. در تنفس هوازی مانند انسان مولکول های آلی اکسید می شوند تا انرژی بدست آید و اکسیژن به آب احیاء شود. زمانی که اکسیژن وجود ندارد هر گونه ماده قابل احياء همانند نیترات می تواند همان نقش اکسیژن را داشته باشد و به نیتریت، اکسید نیتریک، اکسید نیترو احیاء شود.
بنابراین شرایطی که طی آن ارگانیسم ها دنیتریفیکاسیون را انجام می دهند عبارتند از:
وجود مواد آلی قابل اکسید شدن،
عدم وجود اکسیژن و قابلیت دسترسی به منابع نیتروژن قابل احياء.
در این فرایند مخلوطی از محصولات کاری نیتروژن دار تولید می شود. این موضوع بدلیل آن است که در تنفس غیر هوازی از نیترات، نیتریت، اکسید نیتریک و اکسید نیترو به عنوان پذیرنده الکترون استفاده می شود. فرآیند دنیتریفیکاسیون در تصفیه فاضلاب جز تکمیل کننده حذف بیولوژیکی نیتروژن است که شامل نیتریفیکاسیون و دنیتریفیکاسیون می باشد. زمانی که در باره وقوع اوتروفیکاسیون نگرانی وجود داشته باشد و یا در مواردی که آب زیرزمینی باید در مقابل افزایش غلظت نیترات ناشی از تغذیه سفره های آب زیرزمینی با پساب محافظت شود، حذف بیولوژیکی نیتروژن در تصفیه خانه های فاضلاب انجام می شود. حذف نیترات در فرآیندهای بیولوژیکی به دو روش انجام می شود که به شرح زیر می باشد:
حذف سنتزی:
احیای نیترات به روش حذف سنتزی شامل احیای نیترات به آمونیاک برای استفاده در سنتز سلولی است. این فرایتد زمانی رخ می دهد که یون آمونیوم وجود نداشته باشد.
حذف غیرسنتزی
احیای نیترات به روش حذف غیرسنتزی یا دنیتریفیکاسیون بیولوژیکی با زنجیره تنفسی انتقال الکترون همراهی می کند و نیترات یا نیتریت بعنوان الكترون گیرنده برای اکسیداسیون انواع گوناگون الكترون دهنده های آلی و معدنی مورد استفاده قر ار می گیرد.
تماس با ما:
تماس باما
0 notes
clinicab · 18 days
Text
         چگونگی ایجاد  کف در تصفیه فاضلاب
         چگونگی ایجاد  کف در تصفیه فاضلاب
 چگونگی ایجاد  کف در تصفیه فاضلاب
چگونگی ایجاد کف در تصفیه فاضلاب و ایجاد کف در فرآیند لجن فعال یک مشکل عملیاتی رایج در بسیاری از تصفیه خانه های فاضلاب است. کف می تواند در مخزن هوادهی، زلال کننده ثانویه و همچنین در هاضم بی هوازی ایجاد شود.
کف در WWTP که معمولاً  چسبناک و قهوه ای رنگ است، شناور می شود و در بالای مخازن تجمع می یابد، و می تواند بخش زیادی از موجودی جامد و حجم راکتور را به خود اختصاص دهد، بنابراین کیفیت پساب و کنترل زمان ماند لجن (SRT) را کاهش می دهد. این کف همچنین می‌تواند به  گذرگاهها و مناطق اطراف سرریز شود و مشکلات و خطرات شدیدی را برای عملیات و محیط ایجاد کند. در ادامه به چگونگی ایجاد کف در تصفیه فاضلاب می پردازیم.
دلایل زیادی منجر به ایجاد کف در تصفیه فاضلاب می شوند:
وجود سورفکتانت‌های به آهستگی تجزیه‌پذیر (مانند مواد شوینده خانگی) از پساب‌های صنعتی یا شهری
تولید بیش از حد مواد پلیمری خارج سلولی (EPS) توسط میکروارگانیسم‌های لجن فعال در شرایط محدود از مواد مغذی
تکثیر موجودات رشته‌ای و گاز در مخزن هوادهی یا تولیدی در منطقه بدون اکسیژن مخازن هوادهی
زلال‌کننده‌های ثانویه و هاضم‌های بی‌هوازی
وجود روغن در پساب ورودی
کف پایدار
کف پایدار در WWTP محصول حاصل از تعامل بین حباب گاز، سورفکتانت و ذرات آبگریز است. ذرات آبگریز در سطح مشترک هوا و آب جمع می شوند و لایه آب بین حباب های هوا را تقویت می کنند. در همین حال، ذرات همچنین به عنوان جمع کننده برای سورفکتانت عمل می کنند که کف را تثبیت می کند. حباب های گاز در WWTP توسط هوادهی، اختلاط مکانیکی و فرآیندهای بیولوژیکی مانند نیترات زدایی و هضم بی هوازی ایجاد می شوند. سورفکتانت‌ها در WWTP از جریان‌های فاضلابی می‌آیند که حاوی سورفکتانت‌های آهسته زیست تخریب‌پذیر هستند.
Tumblr media
محیط فیزیکی و شیمیایی
حباب های گاز
از مکانیسم کف سازی که در بالا ذکر شد، می دانیم که حباب های گاز در تولید کف ضروری هستند. حباب های گاز در بسیاری از مراحل فرآیند لجن فعال نقش دارند. در مخزن هوادهی، هوادهی و اختلاط مکانیکی برای اطمینان از اکسیژن محلول کافی برای تجزیه هوازی آلاینده‌های آلی یا نیتریفیکاسیون استفاده می‌شود. این امر باعث ایجاد حباب های گاز فراوان می شود. به غیر از ورود خارجی توسط هوادهی یا اختلاط، حباب های گاز نیز می توانند از خود فرآیندهای بیولوژیکی تولید کنند. هم نیترات زدایی در زلال ساز ثانویه و هم هضم بی هوازی در هاضم گازهایی مانند N2 یا CH4، CO2 تولید می کنند. این گازها به تولید کف کمک می کنند.
سورفکتانت ها
بیشتر سورفکتانت‌ها در WWTP از شوینده‌ها، روغن و گریس‌هایی که در خانه‌ها یا صنعت استفاده می‌شوند، سرچشمه می‌گیرند. همچنین اعتقاد بر این است که EPS تولیدی توسط باکتری ها بخشی از سورفکتانت ها را تشکیل می دهد. سورفکتانت می تواند کف را تثبیت کند و اجازه دهد کف جمع شود. هو و جنکینز اثر مساعد یک سورفکتانت غیریونی به آهستگی زیست تخریب پذیر را در کف کردن نشان دادند .
pH و دما
در تشکیل کف پایدار باکتری های زنجیری هستند. نرخ رشد باکتری های زنجیری برای دامنه pH از 6.7 تا 8.0 به طور قابل توجهی تحت تاثیر قرار نگرفت، فقط در pH 8.4 اندکی کاهش یافت. دمای بهینه Microthrix parvicella، یک باکتری رشته‌ای مرتبط با تولید کف، در حدود 25 درجه سانتی‌گراد، مقداری رشد در دمای 8 درجه سانتی‌گراد و رشد ضعیف یا بدون رشد در دمای بالای 35 درجه سانتی‌گراد است.
اکسیژن محلول (DO)
باکتری زنجیری M. parvicella غلظت اکسیژن کم را ترجیح می دهد و در WWTP با DO کم مکانی یا زمانی تکثیر پیدا کرد. در مطالعه اکاما، ام. parvicella با افزایش DO به 2-3 میلی گرم در لیتر  حذف شد. به عنوان یک کنترل موثر برای حجم دادن به لجن و ایجاد کف، انتخابگرهای هوازی با DO بالا (> 2 میلی گرم در لیتر) اغلب قبل از مخزن هوادهی قرار می گیرند تا از رشد باکتری های زنجیری جلوگیری کنند.
میانگین زمان نگهداری سلولی (MCRT)
باکتری های زنجیری بیشتری در WWTP و مطالعات هنگام افزایش MCRT (1.5 تا 20 روز) هستند، در حالی که MCRT در حدود 1 روز در محدود کردن رشد باکتری های رزنجیری موثر بود. کنترل MCRT گاهی اوقات می تواند با افزایش سرعت جریان آب دشوار باشد زیرا زیست توده را می توان بدون حرکت با آب در کف نگه داشت .
میکروارگانیسم های کلیدی
Tumblr media
parvicella عبارتند از باکتری های زنجیری بدون انشعاب گرم مثبت. آنها هوازی، غیر تخمیری هستند و می توانند نیترات را کاهش دهند. اگرچه M. parvicella می تواند در محدوده وسیعی از غلظت اکسیژن رشد کند، آنها شرایط میکروآئروفیلیک را برای رشد خوب ترجیح می دهند. رشته هایی که آنها در DO کم (~ 0.4 میلی گرم در لیتر) تولید می کنند طولانی و منظم هستند بدون سلول های خالی یا تغییر شکل یافته که در شرایط DO بالا مشاهده می شوند [3،5].
مایکولاتا
 با الگوی انشعاب راست زاویه
 با الگوی انشعاب زاویه دار حاد
مایکولاتا را همچنین به عنوان "نوکاردیا" می شناسند، آنها گروهی از باکتری های زنجیری هستند که حاوی اسیدهای مایکولیک در دیواره سلولی خود هستند. آنها تحت راسته Actinomycetales در شاخه Actinobacteria هستند، جدایه ها به عنوان اعضای خانواده Corynebacteriaceae، Dieziaceae، Gordoniaceae، Mycobacteriaceae، Nocardiaceae، Tsukamurellaceae و Williamsiaceae شناسایی شدند. آنها دو مورفوتیپ اصلی دارند: یکی با الگوی انشعاب راست زاویه و دیگری الگوی انشعاب حاد. مشخص شد که Mycolata طیف وسیعی از ترکیبات آلی را جذب می کند و می تواند از نیترات یا نیتریت به عنوان گیرنده الکترون استفاده کند. بسیاری از مایکولاتا می توانند پلی هیدروکسی آلکانوات را در سلول ذخیره کنند و آبگریزی سطح سلولی بالایی داشته باشند.
گوردونیا آماره
گوردونیا آماره متعلق به مایکولاتای منشعب راست‌زاویه است که یکی از رایج‌ترین باکتری‌های رشته‌ای است که در فرآیند کف‌سازی یافت می‌شود. Gordonia amarae می تواند از تعداد زیادی سوبستراهای آلی، هم آب دوست و هم آبگریز استفاده کند و در شرایط هوازی، بی هوازی و بی هوازی قادر به جذب برخی از بسترها است. سلول گوردونیا آماره دارای سطح بسیار آبگریز است و می تواند بیوسورفکتانت ها را از طیف وسیعی از سوبستراها تولید کند. اعتقاد بر این بود که تولید بیوسورفکتانت‌ها برای گوردونیا آماره برای حل کردن بسترهای نامحلول مفید است که به زنده ماندن گوردونیا آماره در کف کمک می‌کند. به طور کلی  آبگریزی بالای سطح سلول و توانایی تولید بیوسورفکتانت ها دو دلیل اصلی برای ایجاد کف گوردونیا آماره است.
فرآیندهای میکروبی کف در تصفیه فاضلاب
Tumblr media
ذخیره سازی بستر
گزارش شده است که M. parvicella و Mycolata می توانند از ترکیبات آلی مختلف به عنوان منبع کربن و انرژی استفاد کنند. این ترکیبات حاوی اسیدهای آلی، بسترهای پیچ��د و اسیدهای چرب در شرایط هوازی، بدون اکسیژن و بی هوازی هستند. سپس بسترها را می توان به صورت درون سلولی در باکتری زنجیری ذخیر کرد.
ذخیره سازی درون سلولی پلی β-هیدروکسی آلکانوآت ها (PHA) در شرایط بی هوازی یا بی هوازی در M. parvicella رشدی به صورت هوازی هستند .
گرانول های ذخیره چربی نیز در برخی از M. parvicella از لجن فعال در حذف مواد مغذی WWTP مشاهده شد . Mycolata همچنین می‌تواند انکلوزیون‌های PHA داخل سلولی را برای ذخیره‌سازی سوبسترا تشکیل دهد.
قابلیت ذخیره‌سازی باکتری‌های رشته‌ای به آن‌ها اجازه می‌دهد در شرایط سخت در حین کار زنده بمانند (مانند لایه‌های محدود در کف، محیط بی‌هوازی-هوازی متناوب)، و خارج از رقابت با تشکیل لخته و سایر باکتری‌ها در لجن فعال، که اکثر آنها نمی‌توانند جذب شوند و بسترهای ذخیره سازی به صورت بی هوازی داشته باشند.
آبگریزی سطح سلولی و فعالیت های اگزونزیمی
آبگریزی سطح سلولی بالاتری در سلول های M. parvicella و Mycolata نسبت به سایر باکتری ها در لجن فعال یافت شد. سطح سلولی آبگریز تر، باکتری های رشته ای را قادر می سازد که جذب بهتری به سوبستراهای آبگریز مانند لیپیدها، اسیدهای چرب با زنجیره بلند (LCFA) داشته باشند. علاوه بر این، باکتری‌های رشته‌ای، اگزونزیم‌های زیادی مانند لیپاز تولید می‌کنند که تخریب و استفاده از بسترها را افزایش می‌دهند .
استراتژی کنترل کف کف در تصفیه فاضلاب
Tumblr media
با توجه به علت کف کردن، ارگانیسم های درگیر و شرایط عملیاتی باید اقدامات خاصی انجام شود.
استراتژی های رایج برای کنترل کف در تصفیه فاضلاب عبارتند از:
کاهش SRT (زمان نگهداری لجن، شبیه به میانگین زمان ماند سلولی، که اغلب در عملیات تصفیه فاضلاب استفاده می شود) برای شستشوی باکتری های رشته ای.
حذف مواد و بسترهای آبگریز که می توانند کف را افزایش دهند یا به رشد باکتری های رشته ای کمک کنند.
معرفی سلکتورها قبل از تانک های هوادهی برای سرکوب رشد باکتری های رشته ای.
افزودن عوامل اکسید کننده مانند کلر برای از بین بردن باکتری های رشته ای (کلر سایر باکتری ها را نیز می کشد) .
 شناسایی باکتری های رشته ای کف در تصفیه فاضلاب
شناسایی سنتی باکتری های رشته ای به مورفولوژی آنها در زیر میکروسکوپ متکی است. با این حال، بسیاری از باکتری های رشته ای ممکن است مورفولوژی قابل تشخیص نداشته باشند، بنابراین، شناسایی بر اساس ژن های 16S یا 23S rRNA ترجیح داده می شود. گروه نیلسن از دانمارک پروتکل نفوذپذیری موثرتری را برای هیبریداسیون درجا فلورسانس (FISH) ایجاد کرد که می‌تواند هیبریداسیون را افزایش داده و سیگنال قوی‌تری تولید کند. آنها مطالعات مختلف اکوفیزیولوژی را بر روی باکتری های رشته ای مختلف از کف و نمونه لجن فعال با استفاده از MAR-FISH  انجام دادند. سایر تکنیک‌های مبتنی بر 16S مانند PCR-DGGE نیز در تشخیص باکتری‌های رشته‌ای به کار گرفته شد.
توسعه مواد شیمیایی موثر کف سازی-کنترل
مواد شیمیایی اکسیدی معمولی مانند کلر که برای از بین بردن باکتری های رشته ای هستند، روی رشد باکتری های دیگر در لجن فعال نیز موثر هستند.
برای کنترل باکتری های رشته ای مورد نظر مواد شیمیایی بیشتری وجود دارد.
پلی آلومینیوم کلرید (PAX-14) در کنترل کف توسط M. parvicella موثر بود. افزودن PAX-14 بر عملکرد نیتریفیکاسیون و حذف COD تأثیری نداشت. با این حال، مکانیسم PAX-14 در کنترل M. parvicella هنوز مشخص نیست.
مکانیسم کف در تصفیه فاضلاب
تماس با ما:
تماس باما
#چگونگی ایجاد  کف در تصفیه فاضلاب#کف در تصفیه فاضلاب#دلایل زیادی منجر به ایجاد کف در تصفیه فاضلاب می شوند:#تولید بیش از حد مواد پلیمری خارج سلولی (EPS) توسط میکروارگانیسم‌های لجن فعال در شرایط محدود از مواد مغذی#زلال‌کننده‌های ثانویه و هاضم‌های بی‌هوازی#وجود روغن در پساب ورودی#کف پایدار#ذرات آبگریز باکتری های زنجیری با ساختار بلند زنجیر و سطح آبگریز هستند.#محیط فیزیکی و شیمیایی#حباب های گاز#سورفکتانت ها#pH و دما#اکسیژن محلول (DO)#میانگین زمان نگهداری سلولی (MCRT)#میکروارگانیسم های کلیدی#مایکولاتا#با الگوی انشعاب راست زاویه#با الگوی انشعاب زاویه دار حاد#گوردونیا آماره#فرآیندهای میکروبی کف در تصفیه فاضلاب#ذخیره سازی بستر#استراتژی کنترل کف کف در تصفیه فاضلاب#استراتژی های رایج برای کنترل کف در تصفیه فاضلاب عبارتند از:#شناسایی باکتری های رشته ای کف در تصفیه فاضلاب#توسعه مواد شیمیایی موثر کف سازی-کنترل#مکانیسم کف در تصفیه فاضلاب#تماس با ما:#تماس باما
0 notes
clinicab · 18 days
Text
حذف فلزات سنگین از پساب
حذف فلزات سنگین از پساب
برای حذف فلزات سنگین از پساب می توان از فرآیندهای جذب به طور گسترده استفاده کرد. پرکاربردترین جاذب کربن فعال است که بهترین نتایج را می دهد اما هزینه بالا استفاده از آن را محدود می کند. هزینه تولید و بازسازی بالایی دارد. از آنجایی که جهان امروز با کمبود منابع آب شیرین مواجه است، جستجوی جایگزین هایی که بار منابع موجود را کاهش می دهد، اجتناب ناپذیر است.
همچنین، فلزات سنگین حتی در غلظت های کمی سمی هستند، بنابراین یک روش ایمن برای حذف آنها از نظر زیست محیطی نیاز به جاذب های کم هزینه را ایجاب می کند. جذب سطحی یک تکنیک مقرون به صرفه است و به دلیل حداقل مزیت دفع زباله، شناخته شده است. این فصل بر روی فرآیند جذب و انواع جاذب های موجود امروزی تمرکز دارد. همچنین شامل جاذب‌های کم‌هزینه از زباله‌های کشاورزی تا زباله‌های صنعتی است که شرایط واکنش جذب را توضیح می‌دهد. مقرون به صرفه بودن، کاربرد فنی و در دسترس بودن آسان مواد خام با تأثیر منفی کم بر سیستم، پیشرو در انتخاب جاذب ها هستند.
1. توضیحات
فلزات سنگین عناصر سمی با وزن مخصوص بیشتر از 5 گرم بر سانتی متر مکعب هستند، به عنوان مثال. روی، آهن، مس، کروم، جیوه، سرب، نیکل، کو و غیره.
منابع طبیعی اصلی فلزات سنگین شامل فرآیندهای آتشفشانی، هوازدگی سنگ ها و فرسایش خاک است.
در حالی که منابع انسانی شامل فرآوری مواد معدنی، احتراق سوخت و فعالیت‌های صنعتی مانند استخراج معدن، فرآوری فلزات، کودهای شیمیایی و تولید رنگ و غیره است.
موجودات زنده منجر به اثرات زیست محیطی می شوند. فلزات سنگین توسط گیاهان جذب می‌شوند که از طریق زنجیره‌های غذایی در حیوانات و انسان‌ها بزرگ‌نمایی می‌شوند و به دلیل سرطان‌زایی‌شان اثرات منفی جدی بر سلامتی ایجاد می‌کنند .
Tumblr media
 جدول 1
اثرات مضر فلزات سنگین
فلزات سنگین تمایل زیادی به تشکیل کمپلکس دارند، واکنش پذیری بالایی دارند و فعالیت بیوشیمیایی بیشتری دارند که باعث می شود در محیط بسیار پایدار باشند. آنها از طریق محیط آبی منتقل می شوند و می توانند در منابع آب و خاک متمرکز شوند. این باعث می شود که آنها برای انواع شکل های زندگی و محیط زیست بسیار خطرناک باشند. از این رو، حذف این فلزات سمی از فاضلاب قبل از تخلیه برای جلوگیری از عواقب زیانبار بیشتر ضروری است.
برای حذف فلزات سنگین از پساب از روش های مرسوم مانند فیلتراسیون غشایی، رسوب شیمیایی، تبادل یونی و غیره برای حذف فلزات سنگین از فاضلاب استفاده می شود. با این حال، این روش ها از معایبی مانند راندمان پایین، نیاز به انرژی بالا، رسوب مواد سمی، ناکارآمدی هزینه و غیره رنج می برند.
برای گذر از این معایب، فرآیندهایی مانند جذب مورد بررسی قرار می گیرند، زیرا به میزان زیادی بر فراهمی زیستی و انتقال فلزات سمی تأثیر می گذارد. این روش کم هزینه و کارآمد برای پاکسازی فلزات سنگین از فاضلاب است. فرآیند جذب اغلب در بسیاری از موارد برگشت پذیر است، بنابراین جاذب را می توان دوباره بازسازی کرد و مزیت دیگری به این فرآیند اضافه کرد. عوامل زیادی مانند دما، pH، غلظت اولیه، زمان تماس و سرعت چرخش بر کارایی جاذب ها تأثیر می گذارد.
1.1 مروری بر فرآیند جذب
جذب یک پدیده سطحی است که در آن محلولی حاوی ماده جاذب بر روی سطح یک جاذب جذب می شود. پدیده جذب می تواند دو نوع باشد. یکی فیزیو جذب است که در آن ماده جاذب به دلیل نیروهای واندروالس به جاذب متصل می شود و دیگری جذب شیمیایی است که به دلیل واکنش های شیمیایی بین جاذب و جاذب اتفاق می افتد. فیزیوجذب برگشت پذیر، ضعیف و معمولا گرماگیر است، در حالی که جذب شیمیایی برگشت ناپذیر، انتخابی و گرمازا است .
1.2 ایزوترم جذب و مدل ها
ایزوترم های جذب، نمایش هایی هستند که مقدار املاح جذب شده روی سطح جاذب را در واحد وزن به عنوان تابعی از غلظت تعادل در دمای ثابت تخمین می زنند. ایزوترم های لانگمویر و فروندلیچ که معمولاً مورد استفاده قرار می گیرند، فرآیند جذب را توصیف می کنند. برخی مدل‌های دیگر نیز استفاده می‌شوند مانند Redlich و Peterson ، Radke و Prausnitz ، Sips، Toth [33] و Koble و Corrigan .
1.3 انواع جاذب ها
Tumblr media
2. حذف فلزات سنگین از پساب با جذب سطحی
جذب سطحی در مقایسه با سایر فن آوری های تصفیه فاضلاب برای حذف فلزات سنگین، یک روش کارآمد و مقرون به صرفه فرض می شود. مزیت اصلی این روش تولید پساب با کیفیت بالا است. فرآیند جذب نسبت به سایر فرآیندها برتری دارد زیرا یک روش اقتصادی برای اصلاح فلزات سنگین است.
در بیشتر موارد، جاذب را می توان دوباره بازسازی کرد و می توان از آن بیشتر استفاده کرد . استفاده از جذب آسان است و هیچ گونه آلاینده سمی تولید نمی کند، از این رو یک تکنیک دوستدار محیط زیست است.
معیارهای برجسته انتخاب جاذب ها عبارتند از:
مقرون به صرفه بودن،
سطح و تخلخل بالا،
توزیع گروه های عاملی و قطبیت آنها
 جاذب های معمولی و تجاری شامل کربن فعال، زئولیت ها، گرافن ها و فولرن ها  و نانولوله های کربنی می باشند
کربن‌ها و مشتقات آن‌ها به دلیل کارایی جذب بالا، پرکاربردترین جاذب‌ها هستند. توانایی استثنایی آن‌ها از ویژگی‌های ساختاری آن‌ها ناشی می‌شود که به آن‌ها سطح وسیعی را با تغییرات شیمیایی آسان می‌دهد که آنها را برای طیف گسترده‌ای از آلاینده‌ها به طور جهانی قابل قبول می‌کند.
کربن های فعال از چند نقص رنج می برند که استفاده از آنها را بسیار محدود می کند. ساخت آنها گران است. دفع کربن فعال مصرف شده دشوار است و بازسازی آنها دشوار و مقرون به صرفه نیست. بنابراین، تحقیقات گسترده ای در زمینه جاذب های کم هزینه انجام شد. جاذب های غیر متعارف ارزان هستند، به وفور در دسترس هستند و به دلیل ساختار متنوع خود که یون های آلاینده را به هم متصل می کنند، ظرفیت کمپلکس کنندگی بالایی دارند. آنها از زباله های کشاورزی تا لجن زباله های صنعتی و دوغاب مصرف شده را شامل می شوند.
2.1 جاذب کربن فعال برای حذف فلزات سنگین از پساب
کربن فعال (AC) به دلیل کارایی بالا، تخلخل و مساحت سطح بالا، یکی از پرکاربردترین جاذب ها می باشد. این به طور تجاری از کربن سازی مانند زغال سنگ و چوب ساخته می شود، بنابراین گران است و استفاده از آن محدود است. آنها عمدتاً از طریق پیرولیز مواد کربنی در دمای کمتر از 1000 درجه سانتیگراد تولید می شوند.
تهیه کربن فعال شامل دو مرحله است، یکی کربن کردن مواد خام در دمای کمتر از 800 درجه سانتیگراد در اتمسفر بی اثر، دوم فعال سازی محصول تولید شده در دمای بین 950 تا 1000 درجه سانتیگراد. از این رو، بیشتر مواد کربن ��ار را می توان به عنوان ماده خام برای تولید کربن فعال استفاده کرد، اگرچه ویژگی های محصول نهایی به مواد خام مورد استفاده و شرایط فعال بستگی دارد.
کربن جزء اصلی جاذب کربن فعال است، عناصر دیگری مانند هیدروژن، اکسیژن گوگرد و نیتروژن نیز وجود دارد. آنها به دو صورت پودری و دانه ای تولید می شوند. نوع پودری دارای منافذ بزرگ و سطح داخلی کوچکتر است. در حالی که دانه دانه دارای سطح داخلی بزرگ و منافذ کوچک است. ظرفیت جذب کربن فعال با تخلخل و سطح بالای آن به همراه ساختار شیمیایی آن تعیین می شود. از این رو، سایر مواد خام کم هزینه مانند ضایعات کشاورزی برای افزایش اثربخشی کربن فعال مورد توجه قرار می گیرند.
2.2 زئولیت ها
آنها سیلیکات آلومینیومی با ساختار کریستالی هستند که به طور طبیعی وجود دارند یا به صورت صنعتی تولید می شوند. آنها یکی از بهترین جاذب ها برای حذف فلزات سنگین هستند زیرا از مواد معدنی آلومینوسیلیکات هیدراته تشکیل شده اند که از آلومینا و سیلیس به هم پیوسته تشکیل شده اند. آنها دارای ظرفیت تبادل یونی قابل توجه، خواص آب دوست و سطح ویژه بالایی هستند که جاذب های بسیار خوبی برای اصلاح فلزات سنگین می کند .
زئولیتها همچنین می توانند اصلاح شوند که ظرفیت جذب بهتری در مقایسه با آنهایی که اصلاح نشده به دست می آورند. زئولیت NaX یکی از پرکاربردترین زئولیت های نانو اندازه برای حذف فلزات سنگین از فاضلاب است. راد و همکاران نانوزئولیت NaX و سپس نانوالیاف نانوکامپوزیت پلیمر پلی وینیل استات/NaX برای بررسی حذف Cd2+ تهیه شد. حداکثر ظرفیت جذب 838.7mg/g در pH 5.0 گزارش شد.
2.3 مواد معدنی رسی
بنتونیت، یک کانی رسی دارای بالاترین ظرفیت تبادل کاتیونی است، قابل بازیافت و حدود 20 برابر ارزان تر از کربن فعال است. کانی های رسی در مقایسه با زئولیت ها ظرفیت حذف کمتری از فلزات سنگین دارند. اما آنها هنوز به دلیل مزایایی که دارند مانند خواص فیزیکی، شیمیایی و سطحی درخشان استفاده می شوند. جیانگ و همکاران حذف Ni2+، Pb2+، Cu2+ و Cd2+ از فاضلاب با استفاده از خاک رس کائولینیتی مورد مطالعه قرار گرفت و مشخص شد که غلظت Pb2+ از 00/160 به 00/8 میلی گرم در لیتر کاهش یافته است.
2.4 مواد نانوساختار
در دهه گذشته، نانولوله‌های کربنی، فولرن‌ها و گرافن  جایگاه مهمی را در حوزه جذب فلزات سنگین از پساب‌ها اشغال کرده‌اند. آنها دارای خواص مکانیکی و شیمیایی استثنایی، استحکام، ظرفیت تبادل، هدایت الکتریکی و پایداری حرارتی هستند. مساحت سطح بالا همراه با برهمکنش های بین مولکولی متعدد به آنها برتری نسبت به جاذب های دیگر در اصلاح فلزات سنگین می دهد.
2.4.1 نانولوله های کربنی، فولرن ها و گرافن
نانو لوله های کربنی
Iijima نانولوله های کربنی (CNTs) را در سال 1991 کشف کرد. آنها به شکل استوانه ای کربنی دراز با ورقه های گرافیت شش ضلعی پیوسته وجود دارند. آنها دو نوع هستند: CNT تک جداره که دارای یک ورق گرافیتی هستند و CNT های چند جداره که دارای صفحات متعدد هستند. آنها پتانسیل بسیار خوبی را برای فلزات سنگین از فاضلاب برای مس ، سرب،  کروم ، نیکل  و کادمیوم  به تصویر کشیده اند.
CNT
CNT ها به دلیل مزایایی مانند خواص مکانیکی و سطحی خواص الکتریکی و نیمه هادی، جاذب های عالی هستند. آنها همچنین سطح ویژه بالایی (150-1500 متر مربع بر گرم) را فراهم می کنند و وجود مزوپورها کارایی جذب آنها را افزایش می دهد. وجود گروه‌های عاملی مختلف حاوی عناصری مانند اکسیژن، نیتروژن و گوگرد به طور مستقیم و غیرمستقیم بر مکانیسم‌های جذبی که جذب فلزات سنگین را افزایش می‌دهند، تأثیر می‌گذارد.
CNT های اکسید شده همچنین ظرفیت جذب بسیار بالایی را برای حذف Cr6+، Pb2+ و Cd2+ از فاضلاب به تصویر می کشند.
توانایی CNT ها برای تغییر آسان آنها را به جاذب های انتخابی با شایستگی افزایش کارایی جذب تبدیل می کند. آنها به دلیل ویژگی های مکانیکی و سطحی قابل توجه، خواص مکانیکی و مغناطیسی و پایداری بالا، به عنوان جاذب های عالی در زمینه تصفیه فاضلاب معرفی می شوند. اما استفاده از آن به دلیل انباشته شدن محل های فعال توسط ماده جذب محدود شده است. از این رو، فعال سازی نانولوله های کربنی مزیت افزایش مکان های دارای گروه های عاملی را ارائه می دهد که به نوبه خود کارایی جذب آنها را برای حذف فلزات سنگین از آب و فاضلاب افزایش می دهد.
فولرن
کشف فولرن ها در سال 1985 منجر به پیشرفت دیگری در علم جذب شد. آنها یک ساختار قفس بسته حاوی حلقه های کربنی پنج ضلعی و شش ضلعی با فرمول C20+m دارند که m یک عدد صحیح است. راندمان جذب آنها را نیز می توان به مورفولوژی سطح و وجود مزوپورها نسبت داد که میل ترکیبی یونی و سطح ویژه بالاتری را برای اصلاح یون های فلزات سنگین از آب و فاضلاب می دهد. الکسیوا و همکاران مطالعه ای با استفاده از فولرن ها برای حذف Cu2+ انجام داد و مکانیسم را از طریق مدل لانگمویر توضیح داد. حداکثر راندمان جذب 14.6 میلی مول بر گرم بود.
فولرن کروی حاوی 60 اتم کربن بیشتر مورد بررسی قرار گرفته است. ویژگی های قابل توجه آن شامل گروه های عاملی هیدروکسیل و اپوکسی روی سطح، نسبت سطح به حجم زیاد، آب گریزی، میل ترکیبی الکترون بالا و ظرفیت تجمع کم است که آن را برای حذف فلزات سنگین مفید می کند. اما استفاده از آنها اغلب به دلیل قیمت بالا محدود می شود. بنابراین، تحقیقات در مورد ترکیب سایر جاذب های معمولی با فولرن ها انجام شده است. مشخص شد که فولرن‌ها ساختار متخلخل جاذب را افزایش می‌دهند که منجر به افزایش راندمان حذف فلزات سنگین می‌شود. مشخص شد که ظرفیت جذب AC ها 1.5-2.5 برابر پس از ورود فولرن ها به ساختار آنها افزایش یافته است.
گرافن
گرافن در سال 2004 وارد صحنه شد و یک شبکه دو بعدی شش ضلعی از اتم های کربن است. همچنین دارای خواص ساختاری، شیمیایی و مکانیکی است که به استفاده از آن در تصفیه فاضلاب کمک می کند. دارای مساحت سطح بالا، گروه های عاملی فعال و مکان هایی بر روی سطح آن است که ظرفیت جذب آن را افزایش می دهد. گرافن همچنین می تواند با اکسیداسیون فعال شود تا گروه های عاملی را افزایش دهد که ظرفیت جذب برای حذف فلزات سنگین را افزایش می دهد.
2.5 جاذب کم هزینه جهت حذف فلزات سنگین از پساب
اگرچه AC ها پرمصرف ترین جاذب ها هستند، اما استفاده از آنها به دلیل هزینه بالا و بازسازی کم آنها محدود است. همین امر در مورد جاذب های توسعه یافته دیگر مانند نانولوله های کربنی، فولرن ها و نانوکامپوزیت ها نیز صادق است. برای تسریع و موثر ساختن فرآیند تصفیه فاضلاب، جستجوی جاذب هایی که مقرون به صرفه باشند و همچنین دارای راندمان جذب بالا باشند، حیاتی است. بنابراین، نیاز به جاذب های کم هزینه متوجه شد. جاذب های کم هزینه شامل آن دسته از مواد غیر متعارفی هستند که به راحتی در دسترس هستند و عمدتاً پسماندهای کشاورزی و صنعتی مقرون به صرفه هستند.
2.5.1 ضایعات کشاورزی
پسماندهای کشاورزی دارای ترکیبی از لیگنین، سلولز، هیدروکربن ها، قندها، آب و نشاسته به همراه سایر گروه های عاملی هستند که ظرفیت جذب این ضایعات کشاورزی را افزایش می دهد. این ضایعات می توانند از پوست برنج گرفته تا پوسته گندم، پوسته تخم مرغ، پوسته نارگیل، میوه خرما، باگاس، پوست بادام زمینی، پوست میوه، بیوچار و غیره باشند. سپس الک می شوند تا اندازه ذرات مطلوب بدست آید که برای آزمایشات جذب استفاده می شود. آنها همچنین می توانند به کاراکترها تغییر داده شوند و بیشتر فعال شوند تا مکان های جذب را افزایش دهند .
Tumblr media
جدول 2
ضایعات کشاورزی برای حذف فلزات سنگین
2.5.2 بیوچار
بیوچار ماده جامد زغالی است که از کربن شدن زیست توده به دست می آید. متداول ترین روش تولید زیست توده از طریق پیرولیز است که تجزیه حرارتی زیست توده در غیاب یا اکسیژن محدود است. بیوچارک‌ها نسبت به AC کربن کمتری دارند، بنابراین کربن، هیدروژن و اکسیژن بیشتری در ساختار آنها باقی می‌ماند. بیوچار پتانسیل قابل توجهی برای پاکسازی فلزات سنگین از پساب نسبت به جاذب های معمولی و کم هزینه نشان داده است. آنها ساختار مزوپور دارند که منجر به مساحت سطح بالا و وجود گروه های عملکردی مختلف می شود و مقدار خاکستر کم آنها را به جاذب های عالی و موثر تبدیل می کند. مواد اولیه مانند پوسته برنج، پوسته ذرت، ضایعات چایو لجن هضم شده  برای حذف استفاده شده است. فلزات سنگین از محلول های آبی و همچنین فاضلاب.
2.6 ضایعات صنعتی
فعالیت‌های صنعتی مقادیر زیادی زباله تولید می‌کنند که معمولاً برای دفع به مکان‌های دفن زباله فرستاده می‌شوند. این پسماندها ظرفیت جذب خوبی دارند و مشکل تصفیه زباله را حل می کنند. مواد زائد مانند خاکستر بادی ، گل قرمز  و سرباره به دلیل ظرفیت قابل توجهی که برای حذف فلزات سنگین از پساب دارند استفاده می شود. بسیاری از جاذب های پسماند صنعتی برای پاکسازی Zn2+ از پساب ها به کار گرفته شده اند. حداکثر ظرفیت جذب برای لیگنین 73.2mg/g، 168mg/g برای لجن زباله و 55.82mg/g برای ضایعات کاساوا بود.
Tumblr media
جدول 3
3. مقایسه جاذب های معمولی و غیر متعارف
برای کارآمد بودن فرآیند جذب، انتخاب مناسب ترین جاذب یک مرحله حیاتی است. اساس اصلی انتخاب یک جاذب شامل هزینه کم، ظرفیت جذب بالاو موثر برای طیف وسیعی از آلاینده ها می باشد. تحقیقات گسترده ای در زمینه عملکردها و مکانیسم های جذب معمولی و غیر متعارف شکل گرفته. جاذب های مختلف به دلیل تفاوت در شرایط تولید مواد خام و جاذب، مکانیسم های مختلفی را دنبال می کنند.
به طور عمده چهار مکانیسم برای جذب موثر آلاینده ها وجود دارد. جذب شیمیایی، جذب فیزیکی، تبادل یونی و بارش . دیویس و همکاران بیان کرد که تبادل یون لزوماً مکانیسم جذب را توصیف نمی کند، اما بسیاری از عوامل و مکانیسم های دیگر به موفقیت این فرآیند کمک می کنند. برخی دیگر از محققان نیز مکانیسم های جذب را توضیح دادند .
به وضوح می توان دید که کربن‌های فعال به دلیل سطح ویژه بالا، مورفولوژی سطح مکانیکی و ساختاری و وجود گروه‌های عاملی که می‌توانند اصلاح شوند، خود را به عنوان جاذب درخشان ثابت کرده‌اند. با این حال، جاذب های غیر متعارف به طور فزاینده ای به عنوان جاذب های کم هزینه و موثر استفاده می شوند. تحقیقات متمرکز بیشتر در مورد مهندسی و اصلاح آنها می تواند آنها را با برخی جاذب های جامد تجاری برابر کند.
4. نتیجه گیری
آلودگی فلزات سنگین یکی از خطرناک ترین شرایطی است که امروزه با آن مواجه هستیم. آنها حتی در غلظت های کمی مضر هستند. بسیاری از آنها سرطان زا هستند، باعث نقص مادرزادی می شوند و بسیار کشنده هستند. از این رو لازم است این فلزات سمی از فاضلاب قبل از تخلیه به آب های آزاد حذف شوند. جذب سطحی یکی از این تکنیک‌هاست که نه تنها به پاکسازی فلزات سنگین از پساب می‌پردازد، بلکه با ردپای کم نیز سازگار با محیط‌زیست است.
جاذب هایی مانند اکتیو شده به طور گسترده ای مورد استفاده قرار می گیرند، اما به دلیل هزینه بالای آن محدود است. بنابراین، لازم است به دنبال گزینه‌هایی باشید که پایدار باشند و هدفشان رفع چشم‌انداز بزرگ‌تر مشکل باشد. جاذب های کم هزینه مانند ضایعات کشاورزی، ضایعات صنعتی و بیوچار نه تنها به حذف فلزات سنگین کمک می کنند، بلکه روش های ارزانی نیز هستند. مواد اولیه آنها به راحتی در دسترس است و این جاذب ها به راحتی قابل تولید هستند.
Tumblr media
تماس با ما:
تماس باما
حذف فلزات سنگین
0 notes
clinicab · 2 months
Text
الکترودیونایزر EDI
Electrodeionization الکترودیونایزر EDI یکی از مهمترین نیازهای صنایع مادر:
مانند صنعت هسته ‌‌ای، صنعت داروسازی، صنعت قطعات نیمه رسانا و …. جهت تولید آب با خلوص بسیار زیاد می‌‌باشد.
Tumblr media
0 notes
clinicab · 2 months
Text
ازن چیست و کاربرد ازن درتصفیه آب و پساب
ازن (O۳) مولکول سه اتمی اکسیژن است که به عنوان قوی ترین اکسنده و ضدعفونی کننده در جهان شناخته شده است.
Tumblr media
0 notes
clinicab · 2 months
Text
بوستر پمپ چیست؟
دستگاهی است که فشار و جریان کم آب را افزایش می دهد. تقویت  فشار و دبی برای رساندن آب به سطح مورد نظر با حجم آب مورد نیاز را فراهم می کند. بوستر پمپ فشار مطلوبی را برای انتقال آب از یک مخزن ذخیره سازی به کل مجوعه یا تاسیسات را فراهم می آورد.
Tumblr media
0 notes